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Solo coloro che sono così folli da pensare di cambiare il mondo,
lo cambiano davvero.

-Albert Einstein





S O M M A R I O

Nel seguente lavoro di tesi è presentato uno studio di instabilità termoacustica
nei combustori di turbogas a ridotte emissioni di NOx. In particolare si vuole
studiare l’ influenza della non linearità del modello che descrive il comportamento
termoacustico della fiamma. Si considera un codice numerico per la costruzione dei
cicli limite del sistema. Diversi articoli presenti in letteratura mettono in evidenza i
limiti di predizione di un’analisi lineare, e mostrano come la non linearità del mod-
ello di fiamma giochi un ruolo fondamentale per la predizione dell’instabilità ter-
moacustica. Nel seguente lavoro tale approccio viene seguito per determinare i cicli
limite di diverse configurazioni di combustori, con l’obiettivo di trovare un modello
numerico per la predizione dell’instabilità termoacustica in un impianto turbogas.
Il codice numerico si basa sulla risoluzione dell’equazione di Helmholtz attraverso
un software agli elementi finiti (Comsol Multiphyscs). Attraverso un’analisi agli au-
tovalori si valuta la stabilità del sistema. Tale approccio viene studiato in Ansaldo
Energia, ed è stato esteso per l’applicazione di modelli di fiamma lineari. In questo
lavoro di tesi, svolto in collaborazione con Ansaldo Energia, si prosegue lo studio
del modello proposto, valutando la possibilità di eseguire un’analisi di stabilità non
lineare in Comsol.
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A B S T R A C T

The thesis presents a thermoacoustic instability study in low NOx gas turbine
combustors. In particular, influence of nonlinear flame model is studied. Nu-
merical code is considered to create limit cycle of the system. Several papers in
literature show prediction limits of linear analysis, and they show the importance
of nonlinear flame model in thermoacoustic instability prediction. In this work this
approach is used to reproduce limit cycle of several combustors’ configurations for
the purpose to determinate numerical model for prediction of combustion instabil-
ity in gas turbine. Numerical code is based on solution of Helmholtz’s equation
carried by finite element code (Comsol Multiphysics). The stability of the system
is evaluated by eigenvalue analysis. This approach is used in Ansaldo Energia for
linear flame model. This work is performed with Ansaldo Energia, and it continues
the development of proposed model, evaluating the possibility to execute nonlinear
analysis in Comsol.
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I N T R O D U C T I O N

The trend of low polluting, high performance power generators led modern gas
turbine’s combustor to be annular and supplied with a lean premix of gas and
compressed air. In particular, lean premix combustion allows reducing combustion
temperature, and then NOx emissions are restricted. This configuration, despite
its advantages, promotes a thermoacoustic combustion instability also called hum-
ming. It is an interaction between heat release and pressure oscillations in com-
bustion chambers, which sometimes leads to damages and machine failures. This
phenomenon is known since a very long time. In 1859 Pieter Rijke discovered a
way of using heat to sustain a sound in a cylindrical tube open at both ends. In
1878 Lord Rayleigh defined a criterion based on a phenomenological and heuristic
description of the instability [1]. Although known since a long time, this phe-
nomenon is not fully understood yet and it is surely not desirable. This instability
shows up under certain circumstances, when perturbations in the flow affect the
flame dynamics, hence the rate of heat released by the flame. This change in the
rate of heat release affects the acoustic waves, creating a feedback loop between
the acoustic waves and the heat-release rate fluctuations. This feedback between
acoustic and combustion may lead to instability with highly undesirable and of-
ten dangerous consequence. Today thermoacoustic instability is much important
in many practical operations. In fact in various combustion systems occasionally
the oscillations do not pose difficulties, but in many cases the amplitude of the
pressure fluctuations are sufficiently high to be unacceptable. There seems to be
four general circumstances under which combustion instabilities occur in practical
system:

1. sufficiently high densities of combustion energy release;

2. introduction if pulses;

3. unstable mean flow field or geometric configuration favourable to shedding
large vortices;

4. operation near the lean blowout limit.

The latest condition has been commonly observed in contemporary gas-turbine
combustors designed to operate near blowout limit as part of the strategy to reduce
production of oxides of nitrogen, and it is an important case study for Ansaldo En-
ergia. The study of thermoacoustic combustion instability is a very complex issue
and, over the years, several different numerical approaches have been developed to
model as well as possible this phenomenon. These approaches can be grouped in
three different categories:

1. low order model;

2. CFD (computational fluid dynamics) models;
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3. Helmholtz solvers.

These numerically methods require a suitable description of the feedback of the
flame to the incoming perturbations, the geometry of the burner and the bound-
ary conditions. In particular, the relation from flow oscillations and heat release
oscillations is not known and an empirical solution may be inserted. A Flame
Transfer Function (FTF) links the heat release oscillations and the flow oscillations.
Usually a linear FTF is used, and time delay between flow oscillations and heat
release is considered. Although linear techniques are able to predict whether the
non-oscillating steady state of a thermoacoustic system is asymptotically stable
(without oscillations) or unstable (increasing oscillations), a thermoacoustic system
can reach a permanent oscillating state (the so called "limit cycle"), even when it is
linearly stable, if a sufficiently large impulse occurs. A nonlinear analysis is able
to predict the existence of this oscillating state and the nature of the bifurcation
process.

The aim of this work is to investigate the behaviour of gas turbine combustion
chambers in presence of nonlinear flame models. The bifurcation diagram helps in
the understanding of the influence of limit cycles as a function of the parameters
of the system. It shows the amplitude alteration of the system from stability to
instability conditions and it shows which value of the control parameter makes
the system unstable. The bifurcation diagrams, obtained by using a continuation
technique in the frequency domain, give the amplitude of the oscillations as a
function of a chosen flame parameter. The Helmholtz equation is used to model
the combustion chamber and nonlinear terms are introduced in the flame model,
starting from the classical n-τ formulation. A three-dimensional finite element
method (FEM) is used for the discretization of the computational domain and a
solver of quadratic eigenvalue problems is combined with Newton technique in
order to identify the points of the bifurcation diagram.

In the first chapter of thesis an overview of gas turbine’s combustion is pre-
sented. In particular, it is reported a brief description of gas turbine emissions
and the main practical configurations of combustion systems as of now adopted.
Also, a description of the lean premixed combustion system can be found, with an
overview about the phenomenon of the thermoacoustic combustion instability. In
the second chapter thermoacoustic theory is approached and mathematical model
is illustrated. The numerical FEM approach used in this work is reported in the
third chapter. The nonlinear analysis is the subject of the fourth chapter. In par-
ticular, the bifurcation concept is illustrated and how a non-linear phenomenon is
present in combustion thermoacoustic analysis. Then, the analytical form of non-
linear flame models is described and the procedure to track bifurcation diagrams
in FEM code is illustrated. In the second part of thesis several numerical test are
reported. The fifth chapter shows the results obtained in Rijke tube and in sim-
plified annular combustor geometry. As can be found in the literature, several
nonlinear flame models are applied in order to obtain bifurcation diagrams. Then,
the nonlinear analysis is applied to two experimental setup, and numeric results
are compared with experimental data. Finally, in sixth chapter, practical machine
geometry is tested and the accuracy of the model is evaluated.
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1 C O M B U S T I O N I N G A S T U R B I N E

A gas turbine engine is a device that is designed to convert the thermal energy
of a fuel into some form of useful power, such as mechanical (or shaft) power
or a high speed thrust of a jet. It is formed by a gas compressor, a burner (or
combustion chamber) and an expansion turbine (Fig.1.1). The main advantage of

Figure 1.1: Gas turbine configuration.

this technology is the high power to weight ratio that leads to use gas turbine as
aeronautic propeller and for electric power generation. The engine is based on
Brayton cycle (Fig.1.2) which considers four thermodynamic processes:

• isentropic process (1-2), ambient air is drawn into the compressor, where it is
pressurized;

• isobaric process (2-3), the compressed air runs through a combustion chamber
where combustion transforms chemical energy of gas in heat power;

• isentropic process (3-4), the heated pressurized air gives up its energy expand-
ing trough a turbine;

• isobaric process (4-1), heat rejection in the atmosphere.

However, in a practical gas turbine, mechanical energy is irreversibly transformed
into heat when gases are compressed, due to internal friction and turbulence. Also,
passage through the combustion chamber is accompanied by slight loss in pressure
and during expansion, between the stator and rotor blades of turbine, irreversible
energy transformation once again occur. Then, ideal Brayton cycle is a theoretical
model but in practical machine entropy variation and efficiency of the components
must be considered (1’-2’-3’-4’). As the temperature increases isobaric line diverges,
and this causes an enthalpy variation higher than in the turbine to the compressor.
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combustion in gas turbine

Figure 1.2: Brayton cycle.

This implies that some of the work extracted by the turbine is used to drive the
compressor but the residual mechanical power can be exploited. An important
parameter of power system is the thermal efficiency. It is defined as:

ηth = 1−
| Q2 |

| Q1 |
(1.1)

Considering air as perfect gas, specific heat ratio constant in chemical composition

and temperature, T2
T1

= p2
p1

(k−1k ) and then T1T3 = T2T4, thermal efficiency of ideal
Brayton cycle becomes:

ηth = 1−
T4
T3

(1.2)

Eq.1.2 shows that thermal efficiency grows as T3 increases. A higher efficiency
leads to lower fuel consumption and then lower production costs. Also pollutant
emission is reduced. For this, turbine inlet temperature is the highest possible,
according to structural mechanical limit. As of now, turbine materials and cool-
ing technique allows to turbine inlet temperature about 1100-1400 °C. In electric
power generation, simple cycle configuration use the surplus of mechanical power
to moves an alternator keyed on the same shaft of the turbine (Fig.1.3). For this
configuration, assuming maximum admissible temperature, thermal efficiency is
about to 0.35-0.4. To increase performance combined cycle configuration can be
used. Waste heat from the turbine is recovered by a heat recovery steam genera-
tor to power a conventional steam turbine (Fig.1.4). Combined cycle has efficiency
about 0.6 and it is the configuration usually used for power generation. Since
simple cycle power plants are less efficient than combined cycle plants, they can
be turned on and off within minutes. This makes the simple cycle very flexible
and they can be used to supply power during peak or unscheduled demand. The
combustion is very important process to reach the required performance. It must
ensure the turbine inlet temperature for requested efficiency, and at the same time
low pressure losses, combustion stability and low pollutant emissions. The combus-
tion process in gas turbine can be classified as diffusion flame combustion, or lean-
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combustion in gas turbine

Figure 1.3: Simple cycle configuration.

Figure 1.4: Combined cycle configuration.

premix staged combustion. In the diffusion flame combustion, the fuel-air mixing
and combustion take place simultaneously in the primary combustion zone. This
generates regions of near stoichiometric fuel-air mixtures where the temperatures
are very high. For lean-premix combustors, fuel and air are thoroughly mixed in
an initial stage resulting in a uniform, lean, unburned fuel-air mixture which is
delivered to a secondary stage where the combustion reaction takes place. Diffu-
sion combustion is more stable than lean-premix combustion but it causes high
flame temperature. Discharge limits for NOx and CO are becoming increasingly
stringent. One of the most logical control solutions is to reduce emissions at the
source. This can be a double-edged sword, as higher combustion temperatures
improve turbine efficiency and reduce CO, but increase NOx. The opposite effect
occurs at lower combustion temperatures. Today, the strict regulation for pollutant
emissions imposes low flame temperature, then lean-premix combustion is used
to reduce NOx emissions and instability’s studies are much important for proper
operation of combustion chamber.
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combustion in gas turbine

1.1 gas turbine emissions
The primary pollutants from gas turbine engines are nitrogen oxides (NOx), car-

bon monoxide (CO), and to a lesser extent, volatile organic compounds (VOC). Par-
ticulate matter (PM) is also a primary pollutant for gas turbines using liquid fuels.
Nitrogen oxide formation is strongly dependent on the high temperatures devel-
oped in the combustor. Carbon monoxide, VOC, hazardous air pollutants (HAP),
and PM are primarily the result of incomplete combustion. Trace to low amounts
of HAP and sulfur dioxide (SO2) are emitted from gas turbines. Ash and metallic
additives in the fuel may also contribute to PM in the exhaust. Emissions of oxides
of sulphur (SOx) will only appear in a significant quantity of sulphur in the fuel
but it can be considered less important. Other types of pollutants are greenhouse
gases. Carbon dioxide (CO2) and nitrous oxide (N2O) emissions are all produced
during natural gas and distillate oil combustion in gas turbines. Nearly all of the
fuel carbon is converted to CO2 during the combustion process. This conversion
is relatively independent of firing configuration. Methane (CH4) is also present in
the exhaust gas and is thought to be unburned fuel in the case of natural gas or
a product of combustion in the case of distillate fuel oil. Although the formation
of CO acts to reduce CO2 emissions, the amount of CO produced is insignificant
compared to the amount of CO2 produced. The majority of the fuel carbon not
converted to CO2 is due to incomplete combustion. Gas turbines without any pol-
lutant’s abatement technology usually have emissions in the range between 180 and
400 ppm, depending on type and load. On the other hand, CO emissions are very
low, often below 10 ppm, then the goal of new combustion chamber project is to
reduce NOx emissions. Relative NOx emissions for diffusion combustors increase
with an increasing load, due to a rise in combustion temperature. In fact the most
important factor affecting formation of NOx is flame temperature; this is theoreti-
cally a maximum at stoichiometric conditions and will fall off at both rich and lean
mixtures. Unfortunately, while operating well away from stoichiometric could re-
duce NOx this results in increased formation of both CO and UHC. NOx formation
rate varies exponentially with flame temperature, so the key to limit NOx emissions
is reduction of flame temperature. This may be solved by introduce diluents into
the combustion zone. CO is initially formed in large quantities in a flame and
converts to CO2. As blowout is approached, CO emissions climb rapidly because
the flame temperature is not high enough to convert it to CO2. At low loads, CO
concentration is high due to airflow through adjacent unlit domes, which is caused
by unburned air quenching the combustor. Low NOx and CO emissions occur in a
narrow band of flame temperature, which is seen from Fig. 1.5. Optimum adiabatic
flame temperature range is usually between 1400 and 1600°C [2].
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1.2 development of industrial gas turbine combustion system

Figure 1.5: CO and NOx production versus flame temperature [2].

1.2 development of industrial gas turbine com-
bustion system

The increasingly strict regulation for pollutant emissions has recently led engine
manufacturers to develop combustors that meet various regulatory requirements
(Bahr [3]; Correa [4]). New concepts for combustion technology have been intro-
duced to the gas turbine industry, including lean-premixed (LPM) combustion (or
lean-premixed prevaporized (LPP) combustion when liquid fuels are employed),
rich-burn quick-quench lean-burn (RQL) combustion, and catalytic combustion
(Lefebvre [5]; Correa [6]). Among these methods, RQL techniques are hampered
by soot formation and incomplete mixing between fuel-rich combustion products
and air. Catalytic combustion suffers from challenges associated with cost, durabil-
ity and safety. Lean-premixed (prevaporized) combustion appears to be the most
promising technology for practical systems at the present time (note that for aero-
engine gas turbines using liquid fuels, lean direct injection (LDI) combustion is
often adopted for pollution control because of its superior stability behaviour). In
LPP combustion, the fuel and air are premixed upstream of the combustor to avoid
the formation of stoichiometric regions. The combustion zone is operated with ex-
cess air and then, as Fig.1.6 shows, the flame temperature is reduced. Consequently,
thermal NOx is virtually eliminated (Zeldovich [7]).

Figure 1.6: NOx emissions vs equivalence ratio.
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combustion in gas turbine

(a)

(b)

Figure 1.7: Comparison of combustor types: conventional diffusion combustor (a), modern pre-
mixed combustor (b).

Differences between conventional diffusion and modern premixed combustors are
illustrated in Fig.1.7. In both type, airflow is slowed down by diffuser for decreas-
ing pressure loss and it is split up by the liner. One part of the airflow goes through
the annulus, the region between the liner and the casing, for cooling and dilution
purposes, another part of the airflow enters the mixing chamber, where fuel is in-
jected. The liner is divided into three sections, primary zone (PZ), secondary zone
(SZ) and dilution zone (DZ). The main function of PZ is to provide enough time
for the fuel to mix and to create combustion conditions. The goal of the SZ is to
provide enough time to achieve full combustion. This significantly reduces bad
reaction products like carbon monoxide and unburned hydrocarbons. Finally the
goal of the DZ is to reduce the temperature of the outlet stream, such that it is
acceptable for the turbine. The premixed design mixes the fuel and air prior to
injection into the PZ, whereas mixing of the fuel and air for diffusion flames does
not occur until inside the PZ. A smaller fraction of the air is diverted to the annu-
lus in premixed designs as leaner fuel/air mixtures are required. This reduces the
amount of air available for cooling purposes and necessitates the use of advanced
techniques. Conventional film cooling slot designs limit the amount of air available
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1.3 lpp combustor’s instability

for leaner combustion. They must also be avoided as the admission of cooler air
into the PZ can potentially reduce flame stability and increase CO emissions. In
conventional combustors additional air is admitted through holes in the liner into
the secondary zone (SZ) to allow the complete oxidation of CO into CO2. Premixed
combustors do not require a SZ as their lower peak flame temperature minimizes
the dissociation of CO2 into CO. The hot combustion products are then diluted
with the remaining annulus air in the dilution zone (DZ). Less time for mixing in
the DZ is required for premixed combustors as the peak flame temperatures are
significantly lower than those in conventional ones.

1.3 lpp combustor’s instability
LPP burners are generally adopted in modern gas turbines for their superior

performance of pollutants reduction, but they have serious drawback such as flame
blow-out, autoignition, ad flashback, which do not appear in conventional diffusion
flame type. Premixing duct is an important parameter of LPP and its design is most
important (Fig.1.8).

Figure 1.8: LPP combustor’s configuration.

Figure 1.9: Burner assembly damaged by combustion instability (left) and new burner assembly
(right) (Goy et al. [8]).
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combustion in gas turbine

At inlet, radial swirlers and converged duct reduce turbulence and accelerate
flow to avoid flashback and auto-ignition, second part of the duct diverges to slow
down flow to improve flame stability. Over these issues, one of serious problem
is that premixed combustion at lean conditions has been sensitive to combustion
instability. When premixed combustion becomes unstable, unsteady fluctuation in
pressure and heat fluxes are observed to increase significantly. As a result, the
fatigue of materials from mechanical vibration induced by the high amplitude of
pressure fluctuation and large unsteady heat fluxes would considerably shorten the
lifetime of combustor. Fig.1.9 shows a burner assembly damaged by combustion
oscillations, and, for comparison, a new burner assembly. One explanation for that
lean premixed combustion is susceptible to instabilities can be attributed to non-
uniform mixing of the inlet flows before flowing into a combustor which leads to
local equivalence ratio fluctuations. A small change in the equivalence ratio near a
lean flammability limit is able to initiate large variations in many characteristics of
flame such as a flame speed, a flame temperature, and a chemical time. The exper-
imental data obtained by Zukoski [9], shown in Fig.1.10 indicates that the gradient
of chemical reaction time with respect to equivalence ratio (∂τchem∂φ ), increases sig-
nificantly as the flame gets leaner. Since the chemical reaction time is inversely
proportional to the reaction rate, a small variation in the equivalence ratio can cre-
ate large fluctuations in the reaction rate at lean conditions, as compared to the
stoichiometric condition. As a result, the pressure oscillations will grow stronger
with definite amplitude when the fluctuations of the reaction rate are coupled with
the acoustic of the combustor system, making a closed loop of nonlinear energy
exchanges mechanism [10].

Figure 1.10: Experimentally obtained chemical reaction time as a function of the equivalence ratio
of a hydrocarbon fuel with a molecular weight of about 100 (Zukoski [9]).
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1.4 suppression methods

Figure 1.11: Schematic drawing of the time evolutions of perturbations responsible for driving
combustion instabilities [10]).

This mechanism is illustrated in Fig.1.11. Three time delay between acoustic
waves and heat’s oscillations are considered. Acoustic waves, originating from the
combustion chamber, travel upstream and modulate the fuel and air mass flows
in the injectors with a time delay τ1. The time that fuel occupies to travel from
injector to combustion chamber generate time delay τconv. These time delays, to-
gether with τchem due to variation of φ, generate an out of phase loop between heat
release and acoustic waves and it can form an oscillatory combustion. The possibil-
ity of forming such large amplitude φ oscillations from modest flow perturbations
suggests that even though diffusive and turbulent mixing processes will tend to ho-
mogenize the mixture as it flows from the fuel injector towards the combustor, the
equivalence ratio perturbations may still persist at the flame. The assessment of the
effects of premixing on combustion instability is quite important for the design of
LPP combustors since the degree of premixing also effects the emission character-
istic of combustors, flame structures and the local distributions of an equivalence
ratio at a fuel nozzle. In light of these facts, extensive efforts have been made world-
wide in the industrial, government, and academic communities to understand the
unique stability characteristics of low emission lean-premixed gas turbine engines.

1.4 suppression methods
In order to eliminate combustion oscillations the coupling between acoustic waves

and unsteady heat release must be interrupted. Two types of approaches are pro-
posed: active and passive control techniques. Passive control involves changes of
fuel or hardware design (for example, in the composition or types of reactants, fuel
injection devices and chamber geometry, or the installation of acoustic dampers),
either to reduce the rate at which energy is transferred to unsteady motions, or to
increase losses of energy, such as by the use of suitable resonators to introduce a
dissipative process [1]. In contrast to passive control, active type control is can be
used, but it involves expenditure of energy from a source external to the system.
Generally, the purpose is to minimize the difference or "error" between the instan-
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combustion in gas turbine

taneous desired and actual behaviour of the system. Active control may involve
sensing the instabilities and then using a feedback control loop to modify one or
more input parameters, which consequently interrupts the coupling between un-
steady heat release and acoustic waves. Both passive and active control techniques
have been successfully applied in instability control in many combustion systems.
A wide description of these techniques has been made by Huang and Yang [11]
and by Culick [12].
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2 T H E R M OA C O U S T I C T H E O R Y

A sound wave in a gas is usually regarded as consisting of coupled pressure and
motion oscillations, but temperature oscillations are always present, too. When
the sound travels in small channels, oscillating heat also flows to and from the
channel walls. The combination of all such oscillations produces a rich variety of
"thermoacoustic" effects. Research in thermoacoustics began with simple curiosity
about the oscillating heat transfer between gas sound waves and solid boundaries.
These interactions are too small to be obvious in the sound in air with which we
communicate every day. However, in intense sound waves in pressurized gases,
thermoacoustics can be harnessed to produce powerful engines, pulsating com-
bustion, heat pumps, refrigerators, and mixture separators. Hence, much current
thermoacoustics research is motivated by the desire to create new technology for
the energy industry that is as simple and reliable as sound waves themselves.
The first observation of combustion oscillation is the "singing flame" described by
Higgins in 1777 [13]. After that several researchers started to analyze the phe-
nomenon and they described that high levels of sound could be produced by a
flame. In 1878 Lord Rayleigh was the first to hypothesized the onset of instability
and to define a criterion based on a phenomenological and heuristic description
of the instability. He quoted: "If heat be given to the air at the moment of greatest
condensation, or be taken from it at the moment of greatest rarefaction, the vibration is
encouraged. On the other hand, if heat be given at the moment of greatest rarefaction, or
abstracted at the moment of greatest condensation, the vibration is discouraged" [14][15].
This paragraph gives the so-called Raylegh criterion for the occurrence of combus-
tion instability. The spontaneous acoustic oscillations that Rayleigh explained in
this way included simple case that the Sondhauss oscillation and the Rijke tube
[16], which are essentially open tubes with either nothing inside (Sondhauss) or a
simple gauze inside (Rijke), heated at one location by a flame and held elsewhere
at ambient temperature.

2.1 rayleigh criterion
Many researchers restated the ideas of Lord Rayleigh, highlighting the impor-

tance of the phase between the unsteady heat release and the pressure oscillations
in the onset of instability. Qualitatively the criterion states that if the oscillations
of pressure and heat release are in phase energy is supplied to the oscillatory flow
field, otherwise energy is subtracted from the system. The Rayleigh criterion is best
defined as the following inequality:∫τ

0

∫V
0
p ′(x, t)q ′(x, t)dvdt >

∫τ
0

∫V
0
Φ(x, t)dvdt (2.1)
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thermoacoustic theory

where p’ and q’ are the pressure and heat release fluctuations respectively, τ, V and
Φ are the period of oscillation, the control volume (the volume of the combustor)
and the wave energy dissipation respectively. When the inequality in eq.(2.1) is
satisfied, thermoacoustic instability occurs. The LHS of the inequality represents
the total mechanical energy added to the oscillations by the heat addition process
per cycle. The RHS of the inequality represents the total energy dissipated by the
oscillation per cycle. The acoustic dissipations inside the combustor are usually
very small, so that the LHS has more importance. Assuming that p’ and q’ have a
periodic time dependence, the sign of the time integral in the LHS depends on the
ratio τ0

τ , where τ0 is the phase difference between p’ and q’. When τ0
τ = 0, 1, 2, ... the

integral has a positive maximum, whereas when τ0
τ = 1/2, 3/2 , ... the integral has

a negative minimum. This agrees with Lord Rayleigh’s hypotheses: when p’ and
q’ are in phase, instability occurs; when p’ and q’ are out of phase, stabilization
occurs. Since the integral in eq.(2.1) is both temporal and spatial, stabilization and
destabilization can occur in different locations inside the combustor.

2.1.1 Analytical Derivation of the Rayleigh Criterion

The acoustic energy density e’ in a one-dimensional acoustic field can be derived
from the unforced conservation equations as:

e ′ =
ρu ′2

2
+
p ′2

2ρc2
, (2.2)

where ρu ′2

2 is the kinetic acoustic energy and p ′2

2ρc2
is the potential acoustic energy.

Any system that would sustain waves should have these energy components and
the periodic conversion from one form to the other sustains the oscillations. The
momentum and energy conservation for a zero mean velocity and without any
spatial dependence can be written as:

ρ
∂u ′

∂t
+
∂p ′

∂x
= 0 (2.3)

∂p ′

∂t
+ γp

∂u ′

∂x
= (γ− 1)q ′. (2.4)

Multiplying eq.(2.3) by u ′ and eq.(2.4) by p ′

γp ′ , summing these two terms and using
eq.(2.2)), the following equation is obtained:

∂e ′

∂t
+ u ′

∂p ′

∂x
+ p ′

∂u ′

∂x
=
γ− 1

ρc2
p ′q ′. (2.5)

Integrating eq.(2.5) temporally over the period of oscillation τ and spatially over
the length L of the combustor, it is obtained:

∆τ

∫L
0
e ′ dx =

γ− 1

ρc2

∫τ
0

∫L
0
p ′(x, t)q ′(x,y)dxdt−∆L

∫τ
0
E ′a dt−

∫τ
0

∫V
0
Φ(x, t)dxdt,

(2.6)
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2.1 rayleigh criterion

where ∆τ and ∆L are the changes over the time and the length respectively. The
LHS of eq.(2.6) is the change in the acoustic energy per cross-sectional area of the
combustor. The first term in the RHS is the Rayleigh integral, the second term is
the acoustic energy flux across the control surface of the field with E ′a = p ′u ′, the
third term is the dissipation in the acoustic field. The energy balance in (2.6) shows
that when the Rayleigh criterion is satisfied, p ′ and q ′ are in phase and the gain in
the first term in the RHS is large enough to overcome the other two terms. In this
situation the acoustic energy in the combustor will be dominant.

2.1.2 Thermodynamic Interpretation of the Rayleigh Criterion

The Rayleigh criterion can be better explained by means of a thermodynamic
cycle [17]. Sound waves are isentropic, so in the p-v diagram (Fig.2.1) the volume
moves back and forth on an isentrope. When the heat is added or extracted peri-
odically to the gas, an increase of the specific volume v of the gas occurs. If this
heat addition is in phase with pressure oscillations, the state of the gas volume
moves clockwise around a thermodynamic cycle (curve 1-2’-3’-4’ in Fig.2.1). This
process can be seen as a "thermoacoustic heat engine", transferring mechanical en-
ergy into sound waves, and a self-excited instability can occur. In the case in which
heat release fluctuations are not perfectly in phase with pressure fluctuations, the
area 1-2’-3’-4’ will be smaller and the efficiency reduced. When the heat release

Figure 2.1: Thermodynamic interpretation of the Rayleigh criterion [1].

fluctuations are out-of-phase with pressure fluctuations, the system moves coun-
terclockwise through the cycle 1-2"-3"-4" and mechanical energy is extracted from
the acoustic wave. The mechanical work performed by the thermodynamic cycle
resulting from acoustic oscillations with heat release can be expressed as follows:

∮
pdv =

∮
(p+ p ′)d(v+ v ′) =

∮
pdv ′ +

∮
p ′ dv ′ = 0+

∮
p ′ dv ′. (2.7)
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thermoacoustic theory

In eq.(2.8) the specific volume v ′ is split into an isotropic part, for which v ′ = −
(vdp ′)
γp ,

and a part v ′(q) due to heat addition (or removal):∮
p ′ dv ′ = −

v

γp

∮
p ′ dp ′ +

∮
p ′ dv ′(q) = 0+

∮
p ′
dv ′q

dt
dt ∼

∮
p ′q ′ dt. (2.8)

The rate of change of v ′ in time is proportional to heat release perturbations. So the
work done by the "thermoacoustic engine" is positive (energy added to acoustics)
if the integral of p ′q ′ is positive over one period of oscillation, as suggested by
Rayleigh. If the losses of acoustic energy exceed the rate of energy input to the
acoustic field by the fluctuating flame, a self-excited instability cannot develop,
even if p ′ and q ′ are in phase. This is why the Rayleigh criterion is a necessary, but
not a sufficient criterion for instability to occur [17].

2.2 mathematical model
The acoustic analysis is based on the resolution of the wave equation. It is derived

from the linearized equations of the perturbations. In the case of a compressible
viscous fluid in the absence of external forces, the Navier-Stokes equations are
obtained from the conservation of mass and momentum:

Dρ

Dt
+ ρ∇ · u = 0, (2.9)

ρ
Du
Dt

= −∇p+
∂σi,j

∂xj
ei, (2.10)

where p is the pressure, ρ the density, u is the velocity vector, σi,j is the viscous
stress tensor and ei is the unit vector in the direction i. D = Dt is the material
derivative and it is defined as ∂

∂t + u · ∇. If the fluid is considered as a perfect gas,
the gas law is introduced:

p

ρ
= RgT , (2.11)

where T is the temperature and Rg = cp − cv is the gas constant with cp and cv the
specific heats at constant pressure and constant volume respectively. The internal
energy e is equal to cvT , whereas the enthalpy h is equal to e+ pρ. Conservation of
energy is defined as:

ρ
D

Dt

(
e+

1

2
u2
)

= −∇ · (pu) + q+∇ · (K∇T) + ∂

∂xj
(σi,jui), (2.12)

where K is the conductivity and q is the rate of heat added to the fluid per unit
volume. Introducing the conservation of momentum, eq.(2.10), eq.(2.12) can be
rearranged as:

ρ
Dh

Dt
=
Dp

Dt
+ q+∇ · (K∇T) + σi,j

∂ui
∂xj

. (2.13)

16



2.2 mathematical model

Entropy S is defined by the thermodynamic relation dh = TdS + ( 1ρ)dp, so that
eq.(2.13) yields:

ρT
DS

Dt
= q+∇ · (K∇T) + σi,j

∂ui
∂xj

, (2.14)

where it is clear that entropy is increased by heat input, heat transfer and viscous
effects. The flow is assumed to be unviscid, so σi,j = 0. Additionally, the fluid is
assumed to be an ideal gas, which, added to the hypothesis of perfect gas, means
that the specific heats are constant. From the definition of entropy, S = cvlog

p
ργ ,

where γ =
cp
cv

is the ratio of specific heats. The flow is considered to be composed
of a steady uniform mean flow (identified by an overbar) and a small perturbation
(identified by a prime):

p(x, t) = p+ p ′(x, t) (2.15)

and the same for the other variables. Applying these hypotheses to eqs.(2.9),(2.10)
and (2.14), the linearized equations for the perturbations are obtained:

Dρ ′

Dt
+ ρ∇ · u ′ = 0, (2.16)

Du ′

Dt
+
1

ρ
∇p ′ = 0, (2.17)

ρT
DS ′

Dt
= q ′. (2.18)

Combining eqs.(2.16), (2.17) and (2.18) and considering that S ′ = cv
p ′

p
− cp

ρ ′

ρ
= 0,

the inhomogeneous wave equation is obtained:

1

c2
D
2
p ′

Dt2
−∇2p ′ = γ− 1

c2
Dq ′

Dt
, (2.19)

where c is the speed of sound.
Since in gas turbine combustion chamber the flow velocity is generally far below the
sound velocity, the flow velocity u can be generally considered negligible. Under
such hypothesis, the inhomogeneous wave equation in eq.(2.19) becomes:

1

c2
∂2p ′

∂t2
−∇2p ′ = γ− 1

c2
∂q ′

∂t
. (2.20)

The acoustic analysis of a gas turbine combustion chamber is based on the resolu-
tion of equation (2.20), with the appropriate boundary conditions. The estimated
frequencies of oscillations obtained from the above classical acoustics analysis com-
monly lie within 10− 15% or less of the frequencies observed in experiments for
combustion instabilities (Culick [18]). It is precisely the departure; however, from
classical acoustics that defines the class of problems we call combustion instabilities.
According to Culick, there are three main reasons why the classical view of acous-
tics is a good first approximation to wave propagation in the combustion chamber.
First, the Mach number of the mean flow is usually so low that convective and
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refractive effects are small. Second, if the exhaust nozzle is choked, the incident
waves are efficiently reflected, and the exit plane can be regarded as a rigid surface,
acoustically. Third, in the limit of small-amplitude disturbances, the unsteady mo-
tion in the compressible flow can be decomposed into three independent modes
of propagation: acoustic, vortical and entropy waves. Even in the highly turbulent
non-uniform flow usually present in a combustion chamber, acoustic waves behave
according to their own simple classical laws. The role of the classical linear acous-
tic analysis should not, however, be exaggerated. It cannot decide which modes of
acoustic oscillations will be excited, nor is it able to predict the amplitude of the
excited modes.

2.3 effect of the mean flow
Since the Mach number of the inlet flow is usually small, it can be possible

to neglect the mean flow velocity. In so doing the error is not so large, but the
mean flow has two important consequences. It influences the propagation velocity
of the acoustic waves, with the one-dimensional wave travelling downward with
velocity c+ u and upward at c− u. Then the mean flow determines the existence
of the entropy and vorticity waves. Eq.(2.20) is written when u = 0, whereas in
the case of u 6= 0 the partial derivatives for pressure p ′ and heat release q ′ are
substituted by material derivatives, which consider the effect of the mean flow
velocity: D

Dt =
∂
∂t + u · ∇. The expression for the inhomogeneous wave equation in

this case is:
1

c2
D2p ′

Dt2
− ρ∇ ·

(
1

ρ
∇p ′

)
=
γ− 1

c2
Dq ′

Dt
. (2.21)

Many numerical tests on 3D FEM code are demonstrated that low Mach number
have a small influence on results [1] confirming what was found by Dowling and
Stow [19] for a configuration without unsteady heat release. Test in a simple tube
shows that the growth rate decreases following a quasi-linear trend with Mach
number, highlighting the damping effect of the mean flow inside the duct since the
stability of the mode is increased with the Mach number. The error in neglecting
the mean flow velocity inside a cylindrical duct is very low for the frequencies: up
to 7% for M= 0.2, while for the growth rate the error determines a more conserva-
tive analysis [1].
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3 N U M E R I C A L M O D E L

Combustion instability’s prediction is a very complex issue and, over the years,
several different approaches have been developed to model as well as possible this
phenomenon. These approaches can be grouped into three different categories: low
order models, CFD (computational fluid dynamics) models and Helmholtz solvers.
Low order models define the combustor system as a series of subsystems, using
mathematical transfer function matrices to connect these lumped acoustic elements
one to each other. In this scheme flame is concentrated in one of the lumped ele-
ments and located at the beginning of the combustion chamber. Acoustically the
phenomenon is correctly investigated if simplified schemes, such as a simple pipe
section, are examined. When complex elements are involved, these models be-
come inexact and make use of assumptions and empirical data. CFD codes include
URANS and LES which theoretically detect all the main effects. Particularly LES
codes are proposed in order to investigate the phenomenon of combustion insta-
bility and matching pressure oscillations with turbulent combustion phenomena,
even though they require large numerical resources. In order to overcome some of
the limitations of the previous techniques, an approach making use of Helmholtz
solver is introduced. Three-dimensional geometries can be examined and complex
eigenfrequencies of the system can be detected. This approach solves numerically
the differential equation problem converted in a complex eigenvalue problem in the
frequency domain. The eigenvalue problem is non-linear and is solved by means of
a linearization under the hypothesis of small oscillations. From the complex eigen-
values of the system it is possible to ascertain if the corresponding mode is unstable
or if the oscillations will decrease in time, i.e. the mode is stable. By means of this
approach it is possible to examine a spatially distributed flame inside the whole
combustion chamber and not only a simplified flame sheet after the burners.

3.1 flame model

Despite the analytical integral form, Rayleigh criterion is still difficult to apply
because no explicit information about frequency spectrum or flame shape is avail-
able. Hence, fulfillment of eq.(2.1) should be verified for every possible frequency
spectrum and any flame shape admitted by the equations of motion. This control
is practically impossible so that, as of now, Rayleigh criterion is correct but useless.
This is the reason why different authors provided different methods to take into
account thermoacoustic interactions. Indeed, there are several mechanisms lead-
ing to instability, and, correspondingly, many competing theories are available. In
Ansaldo Energia, in agreement with several academic studies, to model heat re-
lease fluctuations, Flame Transfer Function (FTF) approach is used. FTF is defined
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as the ratio of heat release rate oscillation to inlet velocity’s or pressure’s fluctu-
ations, where all of them are normalized by their corresponding time-averaged
values (Fig.3.1). In this way relation between pressure/velocity and heat release is

Figure 3.1: Flame Transfer Function approach.

determined. FTF can be obtained experimentally or numerically. In second case
combined use of finite-volume and finite-element codes is requested. In particular,
results obtained with one code are used as input into the other to find the Flame
Transfer Function. This numerical method could be very good but the enormous
computational effort of a precise finite-volume analysis limits the number of inter-
actions between the two codes. However given the good results obtained by using
COMSOL Multiphysics, this software was adopted by Ansaldo to investigate the
combustion instability.

3.1.1 Linear flame model

Many types of combustion response models can be found in literature. One of
the commonly used is the time delay model (n-τ formulation), which has been
extensively employed to study combustion instabilities in liquid-propellant rocket
engines (Crocco and Cheng [20]). The model globally describes the dynamic rela-
tionship between fuel injection and heat release, and can be briefly summarized
as follows (Culick [21]). Suppose that at time t, the pressure in the chamber sud-
denly decreases, causing an increase in the flow of fuel through the injector. The
increased mass is convected downstream to the flame front and burns at some later
time t+ τ, where τ is the time delay. The time scales that contribute to the time
delay are the convection time needed to travel the distance from the fuel injection
location to the flame front, the mixing time for fresh air and fuel to mix with hot
product gases, and the chemical time corresponding to the ignition delay. The time
delay can have a single value in the entire flame zone or a time delay distribution
can be considered. This latter case permits to create a more realistic model of a gas
turbine burner flame. The fluctuating heat release may depend on both the pres-
sure and the velocity, additionally allowing for a time delay. Since in gas turbines
the influence of the pressure fluctuations can be neglected [17], it is chosen a flame
model with heat release fluctuations coupled to the velocity fluctuations u’ with a
time delay. In the linear case and in the time domain it means [1]

q ′

q
= −k

u ′(t− τ)

u
(3.1)
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where k is the interaction index, which represents a dimensionless parameter of
proportionality between the heat release fluctuations and the velocity fluctuations.
The fluctuating variables can be expressed by complex functions of time and posi-
tion with a sinusoidal form: q ′ = q̂e(iωt) and u ′ = ûe(iωt), so that the linear flame
model in the frequency domain can be written as

q̂

q
= −k

û

u
e−iωτ. (3.2)

The linear flame transfer function used in linear-mode calculations is so defined by

FTFL(ω) =
q̂/q
û/u

= −ke(−iωτ). (3.3)

3.2 comsol’s approach
Instability analysis is carried out by using commercial software, Comsol Multi-

physics, based on the finite element method (FEM). Three-dimensional geometries
can be examined and complex eigenfrequencies of the system can be detected. This
approach numerically solves the differential equation problem converted in a com-
plex eigenvalue problem in the frequency domain and the stability analysis can be
conducted. The fluid is regarded as an ideal gas and flow velocity is considered
negligible. The effects of viscosity, mean flow, thermal diffusivity and heat transfer
with walls are neglected, the mean pressure is assumed uniform in the domain.
Under such hypotheses, in presence of heat fluctuations, the inhomogeneous wave
equation (2.20) is obtained. Neglecting the effects of the temperature variation,
no entropy waves are considered and the pressure fluctuations are related to the
velocity fluctuations by

∂u ′

∂t
+
1

ρ
∇p ′ = 0. (3.4)

The COMSOL module considered is "pressure acoustics". For the search of the
eigenvalues and the eigenmodes of the system, the analysis is performed in the
frequency domain and the fluctuating variables are expressed by complex functions
of time and position with a sinusoidal form: p ′ = p̂e(iωτ), where ω = ωr + iωi is
the complex frequency. Its real part ωr gives the frequency of oscillations, while
the imaginary part −ωi provides the growth rate at which the amplitude of the
oscillations increases per cycle. The solving equation for the "pressure acoustics"
module is slightly different from the inhomogeneous wave equation provided in
eq.(2.20)

λ2

c2
p̂

ρ
−
∇2p̂
ρ

= QCM (3.5)

where λ = -iω is the eigenvalue. QCM is the monopole source defined in the "pres-
sure acoustics" module, which is related to q̂. Dividing eq.(2.20) by density, remem-
bering that the fluctuating variables can be expressed as
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p ′ = <(p̂(x)e(iωt)), (3.6)

u ′ = <(û(x)e(iωt)), (3.7)

q ′ = <(q̂(x)e(iωt)), (3.8)

and setting λ = −iω, the inhomogeneous wave equation becomes:

λ2

ρc2
p̂−
∇2p̂
ρ

= −
γ− 1

ρc2
λq̂. (3.9)

Comparing eq.(3.5) and eq.(3.9), the correspondence between QCM and q̂ is ob-
tained [1]:

QCM = −
γ− 1

ρc2
λq̂. (3.10)

Eq.(3.9) shows a quadratic eigenvalue problem that can be solved by means of
an iterative linearization procedure. COMSOL uses the ARPACK FORTRAN as
numerical routines for large-scale eigenvalue problems. An iterative procedure
based on a quadratic approximation around an eigenvalue linearization point λ0
is adopted. Such a procedure is speeded up by using, as approximate starting
eigenvalue, the value obtained through the analysis of the system without heat
release fluctuations. The solver reformulates the quadratic eigenvalue problem as
a linear eigenvalue problem of the conventional form Ax = λBx and iteratively
updates the linearization point until convergence is reached. A direct solver is
used for all the cases. This direct solver works on general matrix systems using
multifrontal method and direct LU factorization of the sparse matrix A.

3.2.1 Test case 1: cylindrical configuration

In order to obtain the expression of the monopole source to insert in COMSOL
in the case of a linear flame model, the paper by Dowling and Stow [19] is taken
as bench-mark. A series of examples is solved by means of a one-dimensional
acoustic network code. In the acoustic network approach the unsteady heat release
is assumed to be concentrated at a single axial plane x = b, called flame sheet and
it is also:

q ′(x, t) = Q ′(t)δ(x− b), (3.11)

where Q ′(t) is the rate of heat release per unit area, assumed to be related to the
oncoming air velocity there with a time delay, and the term δ(x− b) is the Dirac
delta, denoting the reciprocal of the thickness of the flame sheet. Fig.3.2 shows the
geometrical configuration. In the 3D FEM approach it is not possible to consider the
heat release as a flame sheet, so that a thin region for the heat input is considered,
as shown in Fig.3.2. As a consequence, the term δ(x− b) is defined as:

δ(x− b) '


0 x 6 b− s

2
1
s b− s

2 < x 6 b+
s
2

0 x > b+ s
2

(3.12)
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Figure 3.2: Simplified scheme of flame location in a straight duct with uniform cross section [1].

where s is the thickness of the heat release zone and b is its axial location[1]. If we
assume for Q ′/Q the following expression:

Q ′

Q
= −k

u ′

u
(t− τ) (3.13)

which is of the same form of eq.(3.1), considering that:

Q = ρucp∆T (3.14)

substitutingQ ′ in eq.(3.11), considering expression of eqs.(3.6) (3.7) (3.8) and finally
using eq.(3.10), the following equation is obtained:

QCM = k λ û δ(x− b)eλτ (3.15)

where λ is the eigenvalue and all the other constant values that does not appear
are included in k. Eq.(3.15) is the monopole source in COMSOL when a linear
flame model related to the velocity is used. The velocity is evaluated on the section
immediately before the flame.
To confirm this approach, Comsol’s results are compared with analytical solution
proposed by Dowling and Stow to find complex eigenvalues:

tan(K1b)tan[K2(x− b)] =

(
ρ2c2
ρ1c1

)
[1−βe(−iωτ)] (3.16)

where the subscript 1 refers to the domain upstream the flame at temperature T1
and subscript 2 refers to the domain downstream the flame at temperature T2 > T1.
Ki = ω

c is the wave number. In this test case T1 = T2. A comparison from 3D
FEM code’s results and analytical solution of eq.(3.16) are illustrated in Fig.3.3 [1].
Good agreement between analytical and numerical results confirms the accuracy of
Comsol’s approach and the possibility to use this model for combustion instability
prediction.
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Figure 3.3: Variation with τ of the growth rate for the first mode of the duct in Fig. 3.2 (b =
l/10)[1].

3.2.2 Test case 2: annular configuration

At the beginning, results obtained by Campa [1] in simplified annular combus-
tion chamber proposed in [51] are reproduced. For this example a linear flame
model is used to evaluate the influence of heat release and of time delay on the
system. Fig.3.4 shows the configuration of simplified annular combustion chamber
while geometry details are reported in Tab.3.1. The combustor is characterized by
a diffusion chamber ring (plenum) and an annular combustion chamber linked by
12 cylindrical burners. The flame is modelled with a heat source in a finite volume
at the end of the burners (Fig.3.5) using linear flame model in eq.(3.2).

(a) (b)

(c)

Figure 3.4: Simplified annular combustion chamber; longitudinal view (a), frontal view (b) and
internal view (c).
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Table 3.1: Geometry details of simplified annular combustion chamber

Description Value

Mean diameter 0.437 m
Length of the plenum 0.200 m

Outer diameter of the plenum 0.540 m
Internal diameter of the plenum 0.334 m

Length of the burners 0.030 m
Diameter of the burners 0.026 m

Length of the combustion chamber 0.300 m
Outer diameter of the combustion chamber 0.480 m

Internal diameter combustion chamber 0.394 m

Table 3.2: Operating conditions

Description Value Unit

ρ1 Plenum density 0.450 kg/m3

ρ2 Combustion chamber density 0.148 kg/m3

u1 Plenum flow velocity 6.116 m/s
u2 Combustion chamber flow velocity 33.360 m/s
c1 Plenum sound velocity 556 m/s
c2 Combustion chamber sound velocity 945.2 m/s
T1 Plenum temperature 770 K
T2 Combustion chamber temperature 2000 K
φ Equivalent ratio 0.69

P Thermal power 1020 W

Figure 3.5: Simplified scheme of flame location and boundary conditions, for benchmark tests on
straight duct with variation of section.

At operating condition reported in Tab.3.2, first four modes are studied (Fig.3.6).
The first mode is a pure axial mode, the second one is a circumferential mode that
involves only the plenum where the largest pressure oscillations can be seen. The
third mode is a coupled axial-circumferential mode where the largest oscillations
occur in the combustion chamber. The fourth mode is a circumferential mode of the
second order that involves only the plenum. The eigenfrequencies are normalized
with the frequency f0 = c0/l0 where l0 is the mean diameter of the chamber.
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(a) (b)

(c) (d)

Figure 3.6: First four acoustic eigenmodes of the combustor.

Figure 3.7: Variation with k of the normalized frequencies of the annular combustion chamber.
τ = 0 s.

The modes are denoted with the nomenclature (la,ma,na), where la, ma and na
are, respectively, the orders of the pure axial, circumferential and radial modes that
appear in the eigenmode obtained from simulation. At first, time delay is set equal
to zero and the influence of heat release is studied (Fig.3.7). The frequency of axial
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mode is strongly influenced by the variation of k and for higher values of heat
release, axial mode disappears. The increase of k has, on the other hand, a lower
influence on both the frequencies of the circumferential modes in the plenum, while
a significant variation of the frequency is observed for the circumferential mode in
the combustion chamber. At second time, time delay’s influence is studied (Fig.3.8).

Figure 3.8: Influence of time delay on frequency (on the right) and growth rate (on the left) for the
first four modes.
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(a)

(b)

Figure 3.9: Influence of time delay on mode (1,1,0).

To increase time delay, oscillations of frequency and growth rate occur. In par-
ticular, variation between positive and negative value of growth rate shows that
the time delay has an important influence on the stability of the system. This phe-
nomenon is emphasized for higher value of k. In Fig.3.9(a) time delay influence on
the mode (1,1,0) is reported: normalized frequency is the abscissa and growth rate
is the ordinate. τ is varied from 0 ms to 2 ms, with k = 0.75. As one can expect
the curve described in the diagram looks like a spiral, since there is a periodicity
for complex eigenfrequencies: in the frequency domain time delay is located inside
an exponential. This diagram shows the importance of a correct choice of the time
delay, when it is assumed to be constant in the flame model. A short change in the
time delay can determine a passage from a stable to an unstable condition, and vice
versa. Finally, Fig.3.9(b) shows that for higher value of time delay the same mode
present two different frequencies. This phenomenon, with growth rate oscillations,
is due to non-linear effect and they confirm that a nonlinear approach is needed to
study combustion instability.
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4 N O N L I N E A R A N A LY S I S

In real life, in engineering, in nature and in society many phenomena have a non-
linear behaviour and these appear commonly to be chaotic, unpredictable or coun-
terintuitive. Although such chaotic behaviour may resemble random behaviour, it
is absolutely not random. This is due to nonlinear phenomena, which are compli-
cated to study because most of nonlinear systems are impossible to solve analyti-
cally. For this, nonlinear systems are commonly approximated by linear equations
(linearization), but this works well up to some accuracy and some range for the
input values, but some interesting phenomena such as chaos and singularities are
hidden by linearization. The essential difference between linear and nonlinear sys-
tem is that the first can be broken down in two parts. Each part can be solved sep-
arately and finally recombined to get the answer. This is a powerful tool to study
and to predict many phenomena but many things in nature don’t act in this way
[24]. Also nonlinear analysis allows evaluating limit cycle and bifurcation diagram
of the system. Combustion instability is a typical nonlinear phenomenon. Linear
techniques can predict whether a thermoacoustic system is stable or unstable but
with sufficiently large perturbation thermoacoustic system can reach self-sustained
oscillations and, even when it is linearly stable, a nonlinear analysis is required for
predicting the self-sustained oscillations and limit cycle amplitudes. In order to get
this kind of information nonlinearities is introduced inside heat release rate.

4.1 limit cycle and bifurcation: an overview
Dynamical systems theory has been often employed to study nonlinear flow and

flame dynamics in combustion systems (Jahnke and Culick [22], Ananthkrishnan e
al. [23]). Information can be found in the text books like the one written by Strogatz
[24]. Trajectory represents the evolution in time of the system and depending on
whether the system is stable or unstable a different type of trajectory is expected.
Consider a one-parameter autonomous (time-invariant) nonlinear dynamical sys-
tem as follows

ẋ = f (x,R) (4.1)

where x is the state vector variable and R is a scalar parameter. The equilibrium
point x0 of the autonomous system of eq.(4.1) for a given R is the real root of the
equation

ẋ = f (x0,R) = 0. (4.2)

The equilibrium solution x0 has the property that whenever the state of the system
starts at x0, it will remain there for all future time. If the system is perturbed, in
case of stable behaviour it always returns to its initial condition, while in case of
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instability system’s solution diverges. The stability of an equilibrium point is deter-
mined by the eigenvalues of the Jacobian matrix J = ∂f/∂x evaluated at that point.
For equilibrium solution to be stable all eigenvalues must have negative real parts.
Dynamical systems of eq.(4.1) may have not only equilibrium solutions but also pe-
riodic solutions called limit cycles. Limit cycles are presented by isolated periodic
orbits in the phase portrait of the elements of the state vector x. They are inherently
nonlinear phenomena, so they cannot occur in linear systems. The amplitude of a
linear oscillation is set entirely by its initial conditions, and any slight disturbance
to the amplitude will persist forever. In contrast, limit cycle oscillations are deter-
mined by the structure of the system itself and, if the system is slightly perturbed,
it always returns to the limit cycle. The qualitative behaviour of an autonomous
dynamical system is thus determined by the pattern of its equilibrium points and
periodic orbits, as well as by their stability properties, which further depend on
the parameter R. Depending on kind of system and on control parameter consid-
ered, three types of limit cycle can be expected (Fig.4.1). In stable type, perturbed

Figure 4.1: Different types of limit cycle [24].

system returns to limit cycle’s oscillation while, in unstable type, system departs
from limit cycle and it can converge to equilibrium point or it can diverge. If there
is a neighboring trajectory which spirals into the limit cycle as time approaches
infinity, and another one which spirals into it as time approaches negative infin-
ity, a semi-stable limit cycle occurs. Bifurcations represent a qualitative change in
behaviour of the system, and the parameter value at which they occur are called
bifurcation point. They are defined as the change in the equilibrium points, or
periodic orbits, or in the stability properties as the parameter R is varied. Several
types of bifurcations, including saddle-node, transcritical, pitchfork, and Hopf bi-
furcations, are commonly observed in dynamical systems [24]. In particular, when
a pair of complex-conjugate eigenvalues passes through the imaginary axis with
varying values of parameter R, Hopf bifurcation takes place.

4.1.1 Hopf bifurcation diagrams

In Fig.4.2 three diagrams with the same control parameter R are shown. The
variable on the vertical axis is the steady state amplitude of the system, which is
often the peak-to-peak amplitude of the oscillations. At low values of R there is a
solution with zero amplitude, which is known as the stable solution at zero (solid
line in the figure). When R reaches RH, this solution becomes unstable. This point
is known as a Hopf bifurcation point. For R greater than RH, the solution at zero
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amplitude is unstable (dashed line) and the system starts to oscillate and eventu-
ally reaches the steady state amplitude (solid line at non-zero amplitudes), which
is the limit cycle or the stable periodic solution. The nonlinear behaviour around
the Hopf bifurcation point determines two different types of bifurcation. The first
type is the supercritical bifurcation (Fig.4.2(a)) and it is characterized by a gradu-
ally increase of the amplitude as R > RH. For R < RH all perturbations imposed
on the system tend to decay to zero, whereas for R > RH all the perturbations tend
to reach a new stable periodic solution, that is a limit cycle equilibrium. As the
control parameter R is increased, the system follows the red arrow path. As it is de-
creased, the system follows the blue arrow path. The second type is the subcritical
bifurcation (Fig.4.2(b)) and it is characterized by a sudden increase of the steady
state amplitude as R increases through RH, reaching the limit cycle equilibrium
at higher amplitudes (red arrows path). Decreasing the control parameter R, the
perturbations imposed on the system reach a stable periodic solution until R = RF
with RF < RH, where RF is referred to the fold point. As R decreases, through RF
all perturbations decay to zero, as shown by the blue arrow path in Fig.4.2(b). The
dashed line in Fig.4.2(b), located between RF e RH, is known as the unstable peri-
odic solution [24]. Fig.4.2(c) shows a particular type of subcritical bifurcation, since
it is composed of an initial supercritical bifurcation with two fold points which
determine the subcritical behaviour of the bifurcation diagram.
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(a)

(b)

(c)

Figure 4.2: Steady state oscillation amplitude as a function of R for (a) a supercritical bifurcation
and (b-c) a subcritical bifurcation (Campa [1]).

4.1.2 Weakly nonlinear analysis

The appropriate analysis for determining the nature of a Hopf bifurcation point
is a weakly nonlinear analysis. This has been performed before on thermoacoustic
systems [25], making similar assumptions to the time averaging approach in many
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of Culick’s papers. It was derived also by Juniper [26], whose approach differs
from others due to the use of the Maclaurin expansion. This section is entirely
taken from the work by Juniper, in order to demonstrate that is possible to predict
the kind of bifurcation from the analytical form of the flame model. The weakly
nonlinear analysis has been performed on a generic governing equation for fluctu-
ations around the steady state in a single mode thermoacoustic system

ẍ+ ζẋ+ x+ q(x(t− τ)) = 0. (4.3)

The variable x can be identified with the amplitude of the fundamental mode of the
velocity fluctuation, η, in a simple Rijke tube model [27][28] or with η in [29]. In
line with [27][28] the damping coefficient, ζ, appears explicitly and the heat release
is velocity-coupled with a time delay τ. One of two assumptions must be made:

• that the time delay is small compared with the oscillation period χ, or

• that x is periodic in t.

The first of these is chosen here because it is less restrictive, so q(x(t−τ)) ≈ q(x− ẋ).
In a moment a weakly nonlinear analysis will be performed around the Hopf bifur-
cation point, at which oscillations in q are small. In this case it is valid to take the
Maclaurin expansion of

q(x(t− τ)) ≈ q1(x− τẋ) + q2(x− τẋ)2 + q3(x− τẋ)3 + ... (4.4)

where q1 ≡ q ′(0), q2 ≡ q ′′(0)/2! and q3 ≡ q ′′′(0)/3!. For the weakly nonlinear
analysis, this expansion is more general than assuming that q is a specified function
of η, as in ([25],[30]-[36]). q will be expanded only to third order because this is
the lowest order that determines the behaviour around the Hopf bifurcation point.
Eq.(4.4) is substituted into eq.(4.3), which is re-arranged to give

ẍ+ (1+ q1)x+ (ζ− τq1)ẋ+ q2(x− τẋ)
2 + q3(x− τẋ)

3 = 0. (4.5)

The first two terms are those of a harmonic oscillator with frequency (1+ q1)
1/2.

The third term represents the first order competition between heat release and
damping. Around the Hopf bifurcation point they nearly cancel so this term is
small. The final two terms are nonlinear and are small around the Hopf bifurcation
because the amplitude of x is small. Eq.(4.5) can therefore be put into the form

ẍ+ (1+ q1)x+ εh(x, ẋ) = 0 (4.6)

where ε is a small parameter. It is then susceptible to a two-timing analysis [24].
A fast time, χ, and a slow time, T, are defined such that χ = t and T = εt. These
variables, T and χ, are treated as if they are independent. The variable x is then
expressed as a function of χ, T, and ε. The variables ẋ and ẍ are evaluated using
the chain rule

x(χ, T , ε) = x0(χ, T) + ε x1(χ, T) +O(ε2) (4.7)

ẋ =
∂x0
∂χ

+ ε

(
∂x1
∂χ

+
∂x0
∂T

)
+O(ε2) (4.8)
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ẍ =
∂2x0
∂χ2

+ ε

(
∂2x1
∂χ2

+ 2
∂2x0
∂λ∂T

)
+O(ε2). (4.9)

Equations (4.7),(4.8) and (4.9) are substituted into (4.5) and equated at different
orders of ε. At O(ε0) and O(ε1) respectively

∂2x0
∂χ2

+ (1+ q1)x0 = 0 (4.10)

∂2x1
∂χ2

+ 2
∂2x0
∂T∂χ

+ (1+ q1)x1 + (ζ− τq1)
∂x0
∂χ

+ q2

(
x0 − τ

∂x0
∂χ

)2
+

+ q3

(
x0 − τ

∂x0
∂χ

)3
= 0.

(4.11)

If variations of x0 in the slow timescale T are frozen, eq.(4.10) collapses to an ODE
with solution

X0 = rcos(ωχ+ϕ) (4.12)

where ω2 = (1+ q1), r and ϕ are functions of the slow time T. Eq.(4.12) is substi-
tuted into eq.(4.11), which is re-arranged to give an inhomogeneous ODE for x1

∂2x1
∂χ2

+ω2x1 =

[
2ωr

dϕ

dT
− q3

3(1+ω2τ2

4
r3
]
cos(ωχ+ϕ)+

+

[
2ω

dr
dT

+ (ζ− τq1)ωr − q3
3τω(1+ τ2ω2

4
r3
]
sin(ωχ+ϕ) +Θ

(4.13)

where Θ includes terms in cosn(ωχ + ϕ) and sinn(ωχ + ϕ) where n 6= 1. To
avoid secular terms (terms that grow without bound as t → ∞), the expressions
in square brackets in eq.(4.13) must be zero. This leads to an expression for the
evolution of the amplitude r, and phase ϕ, on the slow timescale T, for r 6= 0

dr
dT

=
(τq1 − ζ)

2
r +

3τ(1+ τ2ω2)

8
q3 r3 (4.14)

dϕ

dT
=
3(1+ τ2ω2)

8ω
q3 r2. (4.15)

The first term on the RHS of eq.(4.14) represents linear driving if τq1 > ζ and the
second term represents cubic saturation if q3 is negative or cubic enhancement if
q3 is positive. There is a periodic solution if dr/dT = 0, which occurs when

r = ±

√
4(ζ− τq1)

3q3 τ(1+ τ2ω2)
. (4.16)

Assuming that q1 is positive, this gives two types of solution, depending on whether
q3 is positive or negative, as shown in figure (4.3). The same result can be derived
with a time-averaging approach. This shows that cubic terms are required in order
to predict whether a bifurcation is supercritical or subcritical.
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Figure 4.3: Bifurcation diagrams around the Hopf point predicted from the weakly nonlinear anal-
ysis [26].

4.2 nonlinear flame model
To study the nonlinear behaviour of the combustion instability in Comsol, non-

linear flame model is introduced. In this way bifurcation diagram of the system is
reproduced. To obtain nonlinear dependence between q’ and u’, the procedure pro-
posed by Stow and Dowling [37] is followed. Let consider the linear flame model
in eq.(3.1). Nonlinear relation between heat and flow oscillations is obtained intro-
ducing nonlinear function Γ , which can be expressed as flow amplitude multiplied
by a further nonlinear function Ψ

q ′(t)

q
= −k Γ

(
u ′(t− τ)

u

)
= −k

u ′(t− τ)

u
Ψ

(
u ′(t− τ)

u

)
. (4.17)

The flame model is converted into the frequency domain assuming the flame re-
sponse to a harmonic input

u ′(t) = <(û eiωt) = û cos(ωt). (4.18)

For small disturbance, the heat release is also harmonic and is written as

q ′(t) = <(q̂ eiωt) = q̂ cos(ωt). (4.19)

For finite disturbance, q’(t) may not be harmonic but is still periodic (with the same
period as u’(t)) and hence it can be described by a Fourier series

q ′(t) = <

( ∞∑
m=0

q̂m eimωt

)
, (4.20)
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where m is the order of the harmonics. Let now consider the first harmonic q̂(1).
The first Fourier coefficient is written as

q̂(1) =
ω

π

∫ 2π
ω

0
q ′ eiωt dt. (4.21)

The flame transfer function used in linear model calculation is defined by eq.(3.3).
Introducing eqs.(4.18),(4.19) and the nonlinear flame model in eq.(4.17), and consid-
ering the property of the Fourier transform that F(q ′(t)) = F(u ′(t−τ)) = F(u ′(t))e−iωτ

it is show that

q̂(1) =
ω

π

∫ 2π
ω

0
−kq e−iωτ r cos(ωt)Ψ

(
u ′(t)

u

)(
cos(ωt) + i sin(ωt)

)
dt

= −kq r e−iωτ
ω

π

∫ 2π
ω

0
Ψ

(
u ′(t)

u

)
cos2(ωt)dt

(4.22)

where the imaginary term disappears because the integral from 0 to 2π of the
product of cosine and sine is null. Solving the integral in eq.(4.22) and considering
eq.(3.3), nonlinear flame transfer function is obtained

FTFNL(ω, r) = FTFL(ω)NFTF (4.23)

where

NFTF =
ω

π

∫ 2π
ω

0
Ψ

(
u ′(t)

u

)
cos2(ωt)dt (4.24)

is a function of frequency ad amplitude r = |û/u|.

4.3 procedure to track bifurcation diagrams
There are two procedures to obtain the bifurcation diagrams using the FEM ap-

proach. The first is similar to the theoretical one described by Jahnke and Culick
[22], while the second one is a consequence of numerical code property. The gen-
eral technique is based on fixing all parameters of the system but one and tracing
the steady states of the system as a function of this parameter. In this work, at first,
several tests are performed using the interaction index k as control parameter, while
in second time, two experimental data are reproduced varying combustion cham-
ber length. In both cases the not fixed parameter is the oscillation amplitude r. It
implies that, each time a value of the amplitude r is assumed to detect the solutions
of the eigenvalue problem, a linear flame model is solved. In fact the amplitude r
is defined as |û/u|, hence the NFTF function degenerates to a constant value and
the transfer matrix becomes linear. As a consequence, although the flame model
is nonlinear, the eigenvalue problem is solved for a linear flame model detecting
each point of the bifurcation diagram. At the beginning the Hopf bifurcation point
is evaluated. The amplitude r is set equal to zero and the control parameter used is
varied until the passage from a stable to an unstable condition is observed, which
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means when the imaginary part of the complex eigenfrequencies becomes negative.
The Newton’s method is adopted to detect the point corresponding to zero growth
rate, using the last value of k with positive imaginary part and the first value of k
with negative imaginary part. Once the Hopf point is identified, two different ap-
proaches can be followed to reproduce bifurcation diagrams. Theoretical method
of Culick [22] claims that value of control parameter is changed in the range of
interest, and for each value of this, zero growth rate condition is found varying
the amplitude r. This method is valid for any control parameters assumed, but in
case the control parameter is the interaction index k, another easier approach can
be used. In fact, nonlinear flame transfer function is defined as product of linear
FTF, interaction index k and NFTF which is function of the amplitude. Then, set-
ting the value of amplitude r = r0, one value of NFTF is obtained and linear FTF
is multiplied by constant C = k ∗NFTF(r0). Initially, setting r0 = 0, a fixed value
of NFTF is considered and proportional relation between C and k is founded. For
this condition, varying index k (and then value of C) until unstable condition, Hopf
point is evaluated. When both k and r vary, the zero growth rate condition is ob-
tained for only one value of C. This value of C is the same used for detecting the
Hopf point. Then, for each value of r, the zero growth rate condition is expected
for k = C

NFTF(r) . This approach is faster than theoretical one because when Hopf
point is evaluated the entire bifurcation diagram can be reproduced. However this
method can be used only when the control parameter is k, while in other cases
Culick’s approach is required. Anyhow, connecting the points identified through
the process illustrated, the bifurcation diagram is obtained.
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5 N U M E R I C A L T E S T S

First, to study nonlinear behaviour of combustion systems, heat release models
from the literature are compared with the corresponding data obtained by Comsol.
Several nonlinear flame models are tested obtaining bifurcation diagrams on sim-
ple geometry as a Rijke tube or simplified annular combustion chamber. For these
geometries, using interaction index k as a control parameter, several bifurcation di-
agrams are obtained to evaluate the influence of NFTF’s coefficients and boundary
conditions. Then, to confirm Comsol approach, two experimental data are repro-
duced. In these cases bifurcation diagrams are obtained using combustion chamber
length as a control parameter. The first experimental test considered is reproduced
by Noiray [41]. It considers simple tube geometry with premixed combustion and
variable chamber length. Using analytical heat release model proposed by Heckl
[42][43], bifurcation diagrams are reproduced. The second experimental test con-
sidered is carried out by Palies [44][45] in horizontal tube with swirl premixed
combustion and variable length of the zones before and after the flame. Finally,
using the flame model applied on the configuration proposed by Palies, investiga-
tion of thermoacoustic instability is carried out on geometry of Ansaldo Energia
machine AE94.3A.

5.1 rijke tube
At first, simple configuration of Rijke tube is analyzed. The two sectors separated

by the flame zone represent the plenum (before the flame) and the combustion
chamber (after the flame). Details of the geometry are given in table 5.1 while the
operating conditions are reported in table 5.2.

Table 5.1: Rijke tube dimensions

Description Value

Plenum length 0.75 m
Flame zone length 0.0225 m

Combustion chamber length 2.2275 m
Sectional area 0.07854 m

There is no mean flow. At the beginning open-end inlet and outlet boundary
conditions (p’= 0) are considered and time delay is set constant τ = 0.02 s. This
assumption permits to isolate only the heat release effect without considering the
time delay influence. Fig.5.1 shows the computational mesh, which consists of 6070
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Table 5.2: Rijke tube operating conditions

Description Value

Pressure 100000 Pa
Plenum temperature 300 K

Flame zone and combustion chamber temperature 700 K
Specific heat ratio 1.33

elements, and the location of the heat release which is highlighted. For this config-
uration several nonlinear heat release models are set to track bifurcation diagrams
and to evaluate the influence of the parameters of the system on stability conditions.

Figure 5.1: Computational mesh of the Rijke tube (the flame location is highlighted in blue).

5.1.1 Boundary condition influence

The first flame model tested is a quadratic polynomial, written with reference to
the van der Pol oscillator

ẍ+ (µ2x
2 − µ0)ẋ+ x = 0. (5.1)

The nonlinear flame model becomes eq.(5.2) and its behaviour is reported in Fig.5.2(a).

q ′

q
= −k

[
µ2

(
u ′(t− τ)

u

)2
+ µ0

]
u ′(t− τ)

u
(5.2)

The Nonlinear Flame Transfer Function is obtained following the passages de-
scribed in the previous section 4.2,

NFTF =
3

4
µ2r

2 + µ0. (5.3)

Several couples of values for µ2 and µ0 was analyzed by Cinquepalmi [38]. In this
work values is set as µ2 = 1 and µ0 = 0.2 (Fig.5.2(b)).
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(a)

(b)

Figure 5.2: (a) Flame model in eq.(5.2) with µ2 = 1 and µ0 = 0.2, (b) NFTF in eq.(5.3).

Figure 5.3: Bifurcation diagram of Rijke tube for the polynomial nonlinear flame model in eq.(5.2)
with µ2 = 1 and µ0 = 0.2 .
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Using interaction index k as a control parameter, and flow oscillation’s ampli-
tude r as a not fixed parameter, bifurcation diagram is obtained (Fig.5.3). The first
and third derivatives in zero of eq.(5.3) are both negative, which means that, from
nonlinear weakly analysis, subcritical bifurcation is expected. Results show that
beyond the Hopf point the oscillations grow without limit because both µ2 and
µ0 are positive. Before the Hopf point, periodic solution is unstable for the same
reason (see Fig.(4.3)). As amplitude r increases, unstable conditions occur at lower
values of k. Dashed line represents the zero growth rate condition, under this line
the amplitude is damped and system is stable while, over the line, the amplitude
grows without limit.
For this NFTF influence of the end boundary condition is evaluated. In particular
many values of reflection coefficient RL is set to vary sound impedance Z (eq.(5.4))
at the exit of Rijke tube.

Z =
p

u
= ρc

(1+ RL)

(1− RL)
(5.4)

For RL = −1 wave is totally reflected and open end case returns, while to increase
reflection coefficient dissipative and transmission effects are modelled.

Figure 5.4: Influence of reflection coefficient on limit cycle of eq.(5.2).

Results reported in Fig.5.4 show that moving from open end to closed boundary
condition, Hopf point moves at higher values of k, and then, stable zone increases.
Also, at the same heat release, as reflection coefficient drops, the oscillation ampli-
tude increases. Finally, as k goes to zero asymptotic limit cycles is expected and un-
stable condition is equal for any values of RL. As reflection coefficient varies, oscil-
lation’s frequency of the system changes. In particular, from RL = −1 to RL = −0.4
frequency varies in a range from 74.6 Hz to 85.7 Hz with a monotone increasing
behaviour.
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5.1.2 Time delay influence

The second flame model considered is a fourth order polynomial, written with
reference to the van der Pol oscillator augmented with a fourth order term. So the
nonlinear flame model becomes

q ′

q
= −k

[
µ4

(
u ′(t− τ)

u

)4
+ µ2

(
u ′(t− τ)

u

)2
+ µ0

]
u ′(t− τ)

u
. (5.5)

Following the same steps previously described, the NFTF is obtained:

NFTF =
5

8
µ4r

4 +
3

4
µ2r

2 + µ0. (5.6)

(a)

(b)

Figure 5.5: (a) Flame model in eq.(5.5), (b) NFTF in eq.(5.6) with µ4 = −1, µ2 = 1 and µ0 = 0.2.

The case with µ4 = −1, µ2 = 1 and µ0 = 0.2 is studied. The NFTF is positive
only for small values of the amplitude and then it is negative. Even in this case the
NFTF function is considered only when it is positive and for positive values of the
amplitude r to ensure the physical meaning of the flame model Fig.5.5 (b). Applying
this flame model, bifurcation diagram is obtained (Fig.5.6). The results show a
subcritical Hopf bifurcation to an unstable periodic solution at small amplitudes,
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Figure 5.6: Bifurcation diagram of Rijke tube for the polynomial nonlinear flame model in eq.(5.5)
with µ4 = −1 µ2 = 1 and µ0 = 0.2.

Figure 5.7: Influence of time delay on bifurcation diagram.

followed by a fold bifurcation to stable periodic solution at large amplitudes. The
value of r which changes limit cycle’s behaviour is called fold point. For this heat
release model influence of time delay is studied (Fig.5.7). As time delay varies,
qualitative behaviour of bifurcation doesn’t change but stability conditions vary. In
particular, for τ=5 ms the system is always stable; for τ=10 ms the system is always
unstable; τ=14ms the frequency diminishes from 72 to 71.4Hz until the Hopf point
and then remains constant along the bifurcation curve; for τ=15 ms the frequency
falls from 72 to 66.7 Hz until the Hopf point, staying fixed ever after along the
bifurcation curve; for τ=20 ms the frequency rises from 72 to 75 Hz until the Hopf
point and next does not change. Furthermore, with τ=15 ms the system has the
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largest stability field (Hopf point at k =2.37, fold point at k = 1.12 and limit cycle
amplitude r=1.1), while with τ=14 ms the system has the smallest stability field
(Hopf point at k=0.27, fold point at k = 0.13 and limit cycle amplitude r=1.18); with
τ=20 ms the situation is intermediate (Hopf point at k=1.83, fold point at k=0.87
and limit cycle amplitude r=1.12). Fold points occur always at the same amplitude.
Previous results show that time delay hasn’t monotone influence. In fact, as time
delay changes, phase displacement between heat release and velocity’s fluctuation
varies, and it can be improve or aggravate stability conditions.

5.1.3 Damping effect

The third flame model tested differs than previous because it links heat’s oscilla-
tion to pressure’s oscillations r=|p ′/p|, according to experimental results obtained
by Noiray (Fig.5.8)[39]. Experimental results are approximated with different re-

Figure 5.8: Saturation of the normalized heat release rate fluctuations |Q ′/Q| as a function of the
amplitude r [39]. (◦) Experimental measurements; (−−)|Q ′/Q| = µ0r; (−)|Q ′/Q| =
µ0r−µ1r3; (− ·−)|Q ′/Q| = γtanh(δr).

lations. As shown in Fig.5.8, linear approximation is good for lower values of
amplitude, but as pressure’s oscillation increases nonlinear effects occur. An ex-
cellent agreement is found for hyperbolic tangent function while cubic polynomial
relation approximates experimental data in a large range of interest. Considering
the cubic polynomial suggested by Noiray, bifurcation diagram of the system is
obtained. Then, the flame model is set as:

q ′

q
= µ0

p ′(t− τ)

p
− µ1

p ′(t− τ)

p

3

(5.7)

which corresponds to
NFTF = β0 −β1 r2. (5.8)
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Keeping τ = 20 [ms] and setting β1 = 0.5, β0 = 1 supercritical bifurcation is ob-
tained (Fig.5.9). For lower value of k stable solution is expected, while beyond Hopf

Figure 5.9: Bifurcation diagram for Rijke tube for nonlinear flame model in eq.(5.8) with β0 = 1
and β1 = 0.5.

Figure 5.10: Influence of β1 coefficient on stability condition.

point (k= 0.63) system moves towards higher oscillation amplitude. To evaluate β1
influence, parametric study is executed. Results obtained are reported in Fig.5.10

and they show that as β1 varies, the Hopf point doesn’t change. This occurs be-
cause the Hopf point is evaluated at amplitude r= 0 and then, only parameter β0
has influence on stability conditions. However, from r 6= 0, as β1 increases, lower
amplitude reached by system is expected.
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If negative value of β1 is set, according to weakly nonlinear analysis, subcritical
bifurcation occurs (Fig.5.11).

Figure 5.11: Influence of sign of β1 coefficient on stability condition.

For this flame model, the influence of damping on combustion instability is eval-
uated. Presence of damping leads to a new positive term in left-hand member of
Helmholtz equation [40],

1

c2
∂2p ′

∂t2
+

ζ

c RH

∂p ′

∂t
− ρ∇ ·

(
1

ρ
∇p ′

)
=
γ− 1

c2
∂q ′

∂t
, (5.9)

where ζ is damping coefficient. To reproduce damping effect in Comsol negative
source term must be added in eq.(3.5). Damping can be attributed to many factors
as flow viscosity, or damping walls. Several tests are obtained varying coefficient in
a range between ζ = 0 and ζ = 0.7 to evaluate damping influence. This approach is
applied to NFTF of eq.(5.8) for positive and negative value of β1 in order to consider
damping effect on supercritical and subcritical bifurcation (Fig.5.12). Results show
that as damping coefficient increases, Hopf point moves to higher values of k, then
stable zone is augmented. However damping coefficient have influence on lower
amplitude, while as r increases the same behaviour of bifurcation is expected. This
happens for both type of bifurcation, and it can be explained as result of lower
interaction between heat release oscillation and damped acoustic waves.
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(a)

(b)

Figure 5.12: Influence of damping coefficient on supercritical (a), and subcritical (b) bifurcation .
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5.2 simplified annular combustion chamber
The second nonlinear test is conducted on a simplified annular combustion cham-

ber geometry used in the previous section for linear analysis 3.2.2. Operating and
boundary conditions are the same, time delay is set constant and equal to 2 [ms]
and nonlinear flame model is considered. Fig.5.13 shows the computational mesh,
which consists of 25776 elements, and the location of the heat release of single
burner is highlighted. For this geometry several nonlinear tests are carried out and
bifurcation diagrams of the first azimuthal chamber mode (Fig.3.6(c)) are obtained.
This mode is the most interesting because is the most dangerous for practical oper-
ations, and for this simplified geometry it shows up at frequency equal to 750 Hz.

Figure 5.13: Computational grid of the simplified annular combustion chamber.

5.2.1 Polynomial flame model

To confirm Comsol approach, van der Pol oscillator model augmented with a
fourth order term is used for nonlinear flame model in simplified annular combus-
tion chamber geometry. This flame model is already studied in previous section
for Rijke tube with NFTF explicit in eq (5.6). Setting µ4 = −1, µ2 = 1 and µ0 = 0.5
the first azimuthal chamber mode is analyzed. Bifurcation diagram obtained is re-
ported in Fig.5.14. Bifurcation diagram is qualitatively similar to the one obtained
for Rijke tube, with fold point at amplitude equal to 0.8 in both cases. This confirms
that bifurcation diagram obtained with interaction index k as control parameter, de-
pends on the nonlinear flame model applied, independently to the geometry. To
evaluate the influence of polynomial coefficients, parametric analysis is performed.

NFTF = −β2r
4 +β1r

2 +β0 (5.10)

Initially influence of β0 is studied keeping β2 = 5/8 and β1 = 3/4 (Fig.5.15 (a)).
The results show that qualitatively limit cycle remains the same but the Hopf point
varies. This occurs because Hopf point is found at r = 0. At this condition, NFTF is
equal to β0 and flame model becomes linear with new interaction index C = k ·β0.
Hence, since unstable condition occurs at the same value of C, as β0 increases, the
Hopf point is expected at lower values of k. In second time influence of β1 and
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Figure 5.14: Bifurcation diagram of simplified annular combustion chamber for flame model in
eq.(5.5) with µ4 = −1, µ2 = 1 and µ0 = 0.5.

β2 coefficients are studied (Fig.5.15 (b)(c)). The influence of β1 is evaluated fixing
β2 and β0 constant and equal to 5/8 and 0.5. At these conditions three bifurcation
diagrams are obtained for different test values of β1. In particular, β1 is set equal to
0.5, 0.75, 1. In second time, effects of fourth order term of NFTF are studied, setting
β2 equal to 2/5, 5/8, 4/5 and fixing β0 = 0.5 and β1 = 3/4. As before, Hopf point is
the same because β0 coefficient is constant, but oscillation’s amplitude reached by
the system at the equilibrium varies. In particular these coefficients have opposite
effect. As fourth order coefficient increases, oscillation amplitude decreases, while
as second order coefficient grows, higher value of amplitude is expected.

5.2.2 Influence of geometry

To evaluate influence of chamber geometry on combustion instability, several bi-
furcation diagram are obtained varying length of the zone before (plenum) and
after (chamber) the flame. In particular, length of plenum is varied between 0.1 to
0.3 [m]. Tests with variable chamber lengths are obtained for Lc equal to 0.15 [m],
0.2 [m], 0.25 [m], 0.4[m]. In particular, for the first two chamber length values, sys-
tem is always unstable, while for other values bifurcations diagrams are obtained
(Fig.5.16). Results show that as length of plenum or chamber increase, stable zone
augments. In fact heat release remains constant but volume of the combustion sys-
tem varies. In particular, as length of plenum or chamber increases, volume of the
system grows, and heat per unit volume is reduced promoting stability condition.
This explains also the instability conditions observed for Lc=0.15 [m] and Lc=0.2
[m]. In the bifurcation diagram considered, Hopf point moves towards higher
value of k, while the last amplitude reached by the system is independent from
geometry.
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(a)

(b)

(c)

Figure 5.15: Influence of polynomial coefficients in eq.(5.10):(a) β0 coefficient, (b) β1 coefficient,
(c) β2 coefficient.
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(a)

(b)

Figure 5.16: Influence of geometry on bifurcation diagram:(a) variable chamber length, (b) vari-
able plenum length.
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5.2.3 Asymmetric conditions

To evaluate stability of combustion system asymmetric conditions are tested. In
particular, bifurcation diagrams are obtained for different asymmetric conditions
of the burners. Fig.5.17 shows the configurations considered.

Figure 5.17: Asymmetric configurations tested:(a) all burners have the same conditions; (b) one
symmetry plane is used to divide six different burners from the others; (c) two sym-
metry planes are considered; (d) every burner is between two with different condi-
tions; (e) two alternate different burners are applied.

At first, asymmetric distribution of time delay is tested. One set of burners (red
in figure) is set with τ1 while other burners (blue in figure) work with time delay
τ2. As in the previous analysis, τ1 is equal to 2 [ms] while several tests are carried
out with different values of τ2. In particular for τ2 = 0.5 [ms], τ2 = 1 [ms] and
τ2 = 3 [ms] the system is always stable while for τ2 = 3.5 [ms] and τ2 = 4 [ms]
the system is always unstable. For τ2 = 3.4 [ms], varying intensity of heat release,
system evolves from stable to unstable condition and bifurcation diagram can be
produced (Fig.5.18(a)). Results show that if asymmetric conditions are applied sta-
ble zone is reduced. Additionally, the same bifurcation diagram is obtained for
asymmetric case (b)-(d)-(e) while stable zone of case (c) is more extended than
other asymmetric case but lower of main setting (a). However oscillation ampli-
tude reached by the system is the same for all cases tested.
The second asymmetric analysis is executed applying two different flame models
with the asymmetric burner configuration of Fig.5.17. In particular six burners are
set with linear flame model dependent on velocity flow, while the others use non-
linear flame model of (5.6). Results are reported in Fig.5.18(b). The same behaviour
obtained for nonuniform azimuthal time delay is obtained. In particular, asym-
metric distribution of linear and nonlinear models reduces stable zone, then Hopf
point moves towards lower value of k. This effect is lower for burner configuration
(b) while the others asymmetric cases lead to the same limit cycle.
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(a)

(b)

Figure 5.18: Influence of asymmetric conditions of the burners on bifurcation diagram:(a) asym-
metric time delay influence, (b) asymmetric flame model influence.
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5.3 experimental test of noiray
To confirm Comsol approach for combustion instability prediction, experimental

data obtained by Noiray are reproduced. Experimental setup consists in a tube
terminated at the upstream end by a piston with variable position and at the down-
stream end by a perforated plate, as shown schematically in Fig.5.19 [41]. A pre-

Figure 5.19: Experimental setup of Noiray: the burner is sketched on the left. A close-up view of
the flames anchored on the perforated plate is displayed on the right [41].

mixed gas (methane and air) enters the tube through small holes in the head of
the rigid piston. This mixture passes through the perforated plate, which acts as
a flame holder, and is burnt in the matrix flame just outside the tube. Essentially,
the tube is a quarter-wave resonator (one rigid end and one nearly open end) with
variable length L. The head of the piston is flat providing a quasi-perfect acoustic
reflection boundary at the bottom of the burner. It is easy to modify the resonant
cavity size L (and thus the acoustic properties of the burner) by changing the piston
position. The length L used in this investigation, and used as bifurcation parameter,
takes values from 10 to 75 cm. The resonant duct radius Rd is equal to 3.5 cm. It
is small enough to assume that wave propagation is longitudinal in the upstream
duct for frequencies lower than 1500 Hz. Details of perforated plate can be found
in [41]. From this setup Noiray measured the gain and phase of the FTF of his
matrix burner by exciting it acoustically. In particular it is appropriate to use the
designation "Flame Describing Function" (FDF) instead of Flame Transfer Function
(FTF). This distinction is already apparent in some previous theoretical studies, and
it considers FTF dependent on input velocity amplitude. So, experimental FDF is
obtained by Noiray using five different velocity amplitudes. Results are reported
in Fig.5.20. The FDF depends strongly on the velocity amplitude. As the amplitude
increases, the slope of the phase curves grows. In the gain curves, the frequency
interval, which spans the first minimum (at zero frequency) to the next minimum
becomes smaller and smaller. In literature there are some interesting studies con-
cerning the dependence of the flame transfer function on the input level. Many
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Figure 5.20: FDF measured by Noiray: (a) the gain, (b) the phase [41].

Figure 5.21: Results obtained by Noiray on the first three modes of the system: (a) bifurcation
diagram, (b) oscillation frequency expected at the limit cycle [41].

of these studies indicate that as the input level increases the gain drops, in agree-
ment with what is observed in Fig.5.20(a). However, results concerning the phase
evolution as a function of the amplitude level are less straightforward than those
found in the Noiray’s investigation. From experimental data, using NDR analytical
method [41], stability condition of the system was evaluated by Noiray. In particu-
lar, position of the piston was varied, and for each condition, growth rate value was
determined. Then, bifurcation diagram was obtained considering the zero growth
rate condition (Fig.5.21). Fig.5.21(a) shows limit cycles of three modes which are
represented by different colors. Boundaries of bifurcations correspond to ωi = 0

while color zone represent positive growth rate condition then unstable zone. For
the first two modes solid and dashed boundary lines are plotted. In two cases the
boundary features a turning point with respect to L. This critical point separates
the two branches composing the boundary. The upper branch plotted as a solid
line is the locus of stable limit cycles as can be seen by noting that if the system
is brought to a point below this branch, the growth rate becomes positive and the
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amplitude increases bringing the system back to the initial equilibrium. If on the
other hand the system is brought to a point located above that branch, the growth
rate becomes negative and the amplitude is reduced until the initial equilibrium
is reached. A similar reasoning can be used to show that the lower branches rep-
resented by dashed lines pertain to unstable limit cycles. For a fixed cavity size
L1 =0.21 [m] second mode features a positive growth rate for small amplitude val-
ues, indicating that this mode is linearly unstable. The first mode on the other hand
is linearly stable but nonlinearly unstable. For a cavity length L3 =0.6 [m] the third
mode is linearly unstable behaviour predicted for a length L2 =0.43 [m] is more
straightforward because in this case system is linearly unstable [41]. According to
the diagram, growth rate will eventually decrease as the amplitude increases. In
Fig.5.21(b) oscillation frequency expected at the limit cycle are reported. Finally, in
figure Fig.5.22 schematic behaviour of the system is shown. Depending on whether
L increase or decrease, different behaviour is expected and hysteresis cycle occurs.
As L increase from 0.1 [m] to higher values, mode one appears first as expected
at the ignition point which is linearly unstable, its amplitude increases with in-
creasing L, reaches a maximum and decreases at the turning point (L=0.25m)(LB).
There is a very narrow stable region (CE). As L is increased the supercritical bifur-
cation featured by the second mode appears. The level of oscillation increases (EF),
reaches a maximum (at L=0.5 m), then decreases near the turning point (FG) and
the oscillation switches to the third mode (GH). As L decrease, the third mode is
initiated first, its amplitude decreases at a point where mode hopping takes place
(L=0.6m). The oscillation amplitude then jumps to a higher level and triggers mode
2 (IF). Decreasing L still further induces a decrease in the amplitude of this mode
which vanishes at the supercritical bifurcation at L=0.28 m (FE). A stable region is
reached in this way (EC). A further decrease of L gives rise to the second mode
at low amplitude (CD) while first mode is triggered at higher amplitude and it
persists over the predicted range of burner sizes (AL). This hysteresis cycle is due
to nonlinear effect and it occurs in several practical combustors.
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Figure 5.22: Idealized hysteresis cycle deduced from both experimental results and NDR analysis
[41].

5.3.1 Analytical flame model

To reproduce in Comsol experimental data obtained by Noiray, analytical flame
model proposed by Heckl is used [42][43]. This model considers the present heat
release low in time domain

Q(t)

Q
= n1

u(t− τ)

u
−n0

u(t)

u
, (5.11)

where Q(t) is the fluctuating part of the heat release rate, u(t) is the instantaneous
velocity and u(t-τ) is a time-lagged velocity [42]. n0 and n1 are real positive param-
eters. In frequency domain eq.(5.11) becomes

Q̂(ω)

Q
= (n1e

iωτ −n0)
û(ω)

u
, (5.12)

The gain and the phase of analytical flame model in eq.(5.12) are reported in
Fig.5.23. The gain is a periodic function of ωτ, while the slope of the phase curve
can be considered proportional to the time-lag for small values of ωτ (Fig.5.23(b)).
Analytical flame model is applied on Noiray’s test rig by Heckl [42]. Purely one-
dimensional conditions are assumed, and downstream end is modelled as two
adjacent interfaces where sound waves are reflected and transmitted (Fig.5.24(a)).
The interface at x=L is the perforated plate, and the interface at x=L+∆ acts like an
open end. The pressure reflection and transmission coefficient for the combined
interface, separating region A and region C, have been derived in [43]. If ∆ tends to
zero configuration in Fig.5.24(b) is considered, and reflection (RL) and transmission
(TL) coefficients become

RL =
Rpp − R

2
ppRoe + T

2
ppRoe

1− RppRoe
, (5.13)

TL =
TppToe

1− RppRoe
, (5.14)
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Figure 5.23: Analytical flame transfer function corresponding to eq.(5.11): (a) the gain, (b) the
phase [42].

Figure 5.24: Configuration of numerical model [42].

Table 5.3: Noiray test rig conditions

Description Value

Duct radius 0.75 m
Range of tube lengths 0.1...0.8 m

Thickness of perforated plate 0.003 m
Number of perforations per unit area of plate 1.09 · 105m−2

Radius of perforations 0.001 m
Speed of sound 345 m/s

Specific heat ratio 1.4
Factor relating q(t) and Q(t) 3 · 105m2s−2

where Rpp, Tpp are reflection and transmission coefficients of the perforated plate,
while Roe and Toe are coefficients of unflanged open tube and they are dependent
on the number of holes per unit area, the speed of sound, the radius of the tube
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and the Rayleigh conductivity [42]. The parameters describing the experimental
combustion rig are reported in Tab.5.3. Flame model of eq.(5.12) is used for stability
investigation, with n0 and n1 chosen in such a way that at ω = 0 the gain is equal
to one, and at ωmax the gain is gmax [42]. This requires

n1 −n0 = 1, (5.15)

n1 +n0 = gmax. (5.16)

In Heckl’s work, according with experimental results reported by Noiray, parame-
ters are set as gmax = 1.34 and ωmin ' 2π · 1050 s−1 which gives τ = 0.95 · 10−3 s.
The gain has linear dependence on amplitude, while for time delay quadratic be-
haviour is considered. In particular

gmax = g0 − g1

(u ′
u

)
, (5.17)

τ = τ0 − τ2

(u ′
u

)2
(5.18)

with g0 = 1.42, g1 = 0.3, τ0 = 0.94 · 10−3 s and τ2 = 2.5 · 10−3 s. From analytical
FTF in eq.(5.12), using eq.(5.15) and eq.(5.16) with relations of eq.(5.17) and (5.18),
analytical FDF is obtained

FDF(ω, r) = n1(r)eiωτ(r) −n0(r). (5.19)

(a) (b)

Figure 5.25: Analytical flame describing function: (a) the gain, (b) the phase [42].

5.3.2 Numerical results in Comsol

To reproduce bifurcation diagram of Noiray’s test rig in Comsol, analytical model
of eq.(5.19) is used. 3D cylindrical geometry is considered, and the operating con-
ditions of Tab.5.3 are set. The computational mesh is the same of Fig.5.1. To model
the piston closed boundary conditions is applied, while for represent perforated
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(a)

(b)

Figure 5.26: Bifurcation diagram of the first axial mode of Noiray’s test rig with flame model of
eq.(5.19), g0 = 1.42, τ0 = 0.94 · 10−3s and τ2 = 0s; (a) g1=1, (b) g1 = 2.

plate, acoustic impedance is set considering coefficients in eqs.(5.13) (5.14). Bifur-
cation diagram of the first axial mode is obtained varying the length of the zone
after the flame. In particular, for each value of chamber length, zero growth rate
condition is evaluated. In [42] stability conditions are evaluated using Green’s func-
tion approach and modelling the flame zone as an infinitesimal section. In Comsol
different approach is followed. In particular, volumetric heat release zone must be
considered and calibration of the amplitude is required. In fact, it is possible to
change the input amplitude of NFTF, but the value of u’ in linear model is evalu-
ated iteratively from the solver, and it cannot be set. Hence, to consider the same
amplitude in flame model, a calibration coefficient λ must be inserted. To calibrate
the model in Comsol, several test are carried out using parametric study of analyt-
ical flame model in [42] as benchmark. This analysis computed by Heckl shows
the influence of g1 and τ2 coefficients on bifurcation diagram. Considering data
with constant τ2 and variable g1, value of calibration coefficient λ is defined. In
particular, τ2 is set equal to zero and g1 is varied from 0 to 2. Considering g = λ ·g1
with λ = 0.3 and replacing g to g1 in equation eq.(5.17) results in Fig.5.26 are re-
produced. The maximum amplitude of bifurcation diagram is similar but the Hopf
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point evaluated by two numerical approaches are different. However, to calibrate
Comsol model, the peak of bifurcation diagram must be considered, in order to set
the correct amplitude in the flame model. In this way gain of FDF is properly eval-
uated and nonlinear analysis can be performed. Maximum correlation is obtained
setting λ = 0.3.
To confirm calibrated model, case of τ2 = 2.5 ms and g1 = 0.3 is tested. For sev-
eral values of L, amplitude r is varied and stable or unstable zones are evaluated
(Fig.5.27(a)). The results show the presence of a main band, with other several mi-

(a)

(b)

Figure 5.27: Bifurcation diagram of the first axial mode of Noiray’s test rig with flame model of
eq.(5.19), g0 = 1.42, g0 = 0.3, τ0 = 0.94 · 10−3s and τ2 = 2.5 · 10−3s; (a) Comsol
results (b) Green’s function results [42].

nor bands with decreasing width. These predictions capture the behaviour at low
amplitudes, in particular the linear stability range and the limit cycle amplitudes
for low L values. However, this flame model predicts a band of instability, which
spans the whole L range, while Noiray’s instability region has the shape of a tongue,
which does not extend beyond L values of 0.16m (Fig.5.21(a)). Comparison between
Comsol results and Green’s function approach are reported in Fig.5.27. In Comsol
the same behaviour of stable and unstable zone obtained by Heckl are reproduced.
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Also, another unstable zone occurs for low amplitude and from L= 0.32 m, but the
first Hopf point is evaluated for L= 0.16 m in greater agreement with experimental
data. Second test is reported in [42] with g1 = 1 instead of 0.3. The stability map
looks quite different, as shown in Fig.5.28. The behaviour of bifurcation diagram is

Figure 5.28: Bifurcation diagram obtained in Comsol with flame model of eq.(5.19), g0 = 1.42,
g0 = 1, τ0 = 0.94 · 10−3s and τ2 = 2.5 · 10−3s.

similar to the experimental one obtained by Noiray. As L increases, unstable zone
occurs at higher value of amplitude, and it remains for gradually lower range of r
until the fold point at L= 0.35 m. So, better agreement with experimental data is
obtained increasing g1 from extrapolation value of 0.3 to empiric value of 1. This
can be explained by the fact that analytical FDF overestimates gain value. Hence, a
higher value of g1 reduces overall gain, and then greater agreement between ana-
lytical FDF and experimental one is obtained.
In Fig.5.29 a comparison between experimental bifurcation diagram and numerical
results is reported. Limit cycle obtained with Helmholtz solver is similar to the one
determined with Green’s function approach. In particular Hopf point of experi-
mental limit cycle is correctly evaluated, and fold point occurs at amplitude r ≈ 0.7
according to reported data. Differences between two numerical results are due to
different equation solution. Comsol makes use of a Helmholtz solver while Heckl
used Green’s function approach. Also, in FEM code 3D geometry and volumetric
heat release zone are considered.
Finally, a parametric study on g1 value is performed to optimize numerical results.
In particular, setting g1 equal to 1.33 instead of 1 a greater agreement with Noiray’s
results is obtained (Fig.5.30). The higher value of g1 is due to overestimation of the
gain by the analytic FDF.
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Figure 5.29: Comparison between experimental bifurcation and numerical results, g1 = 1.

Figure 5.30: Comparison between experimental bifurcation and numerical results, g1 = 1.33.

5.4 experimental test of palies

In order to confirm Comsol approach, a further experimental test rig is consid-
ered. In particular the results obtained by Palies are reproduced [44][45]. In this
experimental test, FDF approach was applied on the dynamics of turbulent flames
formed by a swirling injector in a confined geometry. Swirling injection is used in
many practical systems like jet engines or gas turbine combustors. Experimental
setup is formed by a combustor which comprises an upstream manifold includ-
ing a settling chamber, a contraction ended by a constant diameter duct equipped
with the swirler, a horizontal end piece and a cylindrical flame tube (Fig.5.31). An
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Figure 5.31: Exprimental test rig of Palies [45].

air/methane premixed flow is delivered to the feeding manifold unit through two
diametrically opposed apertures. The flow then crosses a grid and a honeycomb
to break the largest turbulent scales. The gas then traverses a converging section
to decrease the boundary layer thickness, reduce the level of turbulence and flatten
the velocity profile at the swirler inlet. The flow rotation is generated by the swirler
which generates a swirl number about 0.55 [45]. The tube diameter is 70 mm and
the length of zone after the flame can take different values L3 = 100, 150, 200 and
400 mm respectively. There are also three lengths L1 available for the upstream
manifold: short (96 mm), medium (160 mm) and long (224 mm). The upstream
manifold diameter is 65mm. More details are given in [45]. The temperature varies
from 300 K in zone before the flame, to 1600 K in chamber zone. A loudspeaker
is placed at the back end of this system to measure the flame describing function
(Fig.5.31(a)). It was used to generate harmonic perturbations and oscillations in
the flow to recreate combustion instability. So, the loudspeaker was removed, and
setup of figure Fig.5.31(b) was used to obtain frequencies and amplitudes of velocity
disturbances u’/U under self-sustained limit cycle operation. In particular, pertur-
bations of the system was recorded with a microphone (M0) located at the base
of the burner, while a second microphone (M1) placed in front of the loudspeaker
provided a reference signal. FDF was obtained by modulating the flame with a
loudspeaker and by simultaneously measuring the velocity oscillation with a hot
wire anemometer and the heat release rate perturbation with a OH detector [45].
Experimental results obtained by Palies are reported in Fig.5.32. The gain decreases
in a first range between 0 and 60 Hz to a value of less than 0.5 and it increase to
value of 1.2 from 60 to 100 Hz. Each curve features a peak which is dependent on
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Figure 5.32: Exprimental FDF obtained by Palies [45].

value of amplitude. Finally, at high frequency, the gain decreases to zero. This be-
haviour is in agreement with several other FDF measured and reported in literature.
The behaviour is similar for all amplitude inspected, with difference in peak values
at 60 and 100 Hz. The phase is lower dependent from amplitude, and in the range
of interest, it can be considered the same for all amplitude. Furthermore, phase’s
behaviour is quite linear and, with fair approximation, proportional relation be-
tween τ and ω can be considered. For this configuration time delay was estimated
at 5ms [45], and since the amplitude influence is very low, it can be considered con-
stant. From experimental analysis was also evaluated a damping rate of combustor
system ζ. This coefficient is used to evaluate the stability condition of the system.
In fact, according to several literature approaches, if growth rate is lower than ζ os-
cillations amplitude is damped and the system evolves to stable conditions. Then,
if ωi > ζ unstable condition is expected, while for ωi < ζ stable condition occurs.
For Palies test rig ζ was evaluated equal to 0.55 s−1 [45]. At condition reported
before, for each length of upstream manifold considered ("short", "medium" and
"long" configurations), length of chamber was varied and rms of pressure was mea-
sured in order to evaluate stability conditions (Fig.5.33). To reproduce stability map
of the first mode of the system, numerical simplified model was used by Palies [45].
He considered simplified one dimensional geometry and infinitesimal heat release
zone to model the flame. Solving an eigenvalue problem unstable conditions were
evaluated. Results obtained for "medium" and "long" configuration are reported
in Fig.5.34. The stability map shows the value of ωi − ζ. Hence, at condition of
growth rate equals to damping ratio (plotted in white zone) bifurcation diagram is
evaluated. For ωi > ζ unstable zone is expected, and as value of ωi − ζ increases,
stronger unstable conditions occur. For "medium" configuration Hopf point is eval-
uated at L3=190 mm, while in "long" configuration it moves to L3 ≈ 220 mm. In
both cases alternated subcritical and supercritical bifurcations occur.
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Figure 5.33: Measure of the stability conditions of the combustor. Stable configurations are indi-
cated with gray circles while black stars indicate a high level of rms pressure fluctua-
tion corresponding to a self-sustained oscillation of the system. Gray stars indicate a
slightly unstable configuration. [45].

(a)

(b)

Figure 5.34: Stability maps obtained by Palies. The colorbar indicates values of ωi − ζ in s−1

(negative values correspond to the gray region). The line separating gray and white
regions corresponds to points where ωi − ζ = 0 meaning that the limit cycle is
reached [45]. (a) "Medium" configuration (L1=181.3 mm), (b) "Long" configuration
(L1=245.3 mm).
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5.4.1 Numerical results

To reproduce in Comsol stability conditions of Palies test rig, the same geometry
and operating conditions in [45] are considered. To model heat release in frequency
domain, eq.(5.20) is applied.

q̂

q
= NFTF

( û
u

)
· û
u
eiωτ (5.20)

Time delay is set constant and equal to 5 ms, while the NFTF is extrapolated from
experimental gain data of FDF. In particular, piecewise function of frequency is
considered (eq.(5.21)). A harmonic function approximates gain of FDF in frequency
range between 0 and 87 Hz, while the remaining part is modelled with an expo-
nential function.

GFDF =

{
0.7+ ξ1

(
u ′

u

)
· cos

(( f
4π

)
−ϕ
)

if f < 87 Hz,

ξ2
(
u ′

u

)
·e−0.017 f if f > 87 Hz.

(5.21)

To consider amplitude influence, ξ1 and ξ2 parameters are inserted. Good agree-
ment with experimental data is obtained setting ϕ equal to 1.2 and using linear
behaviour in eqs.(5.22)(5.23) for ξ1 and ξ2.

ξ1 = 0.85− 0.7
(u ′
u

)
(5.22)

ξ2 = 6.35− 2.9
(u ′
u

)
(5.23)

In Fig.5.35, for each value of r = u ′/u, a comparison between experimental and
analytical gain of FDF is reported. Analytic function is in good agreement with
experimental data especially in the range of interest for the acoustic mode stud-
ied. In particular, the mode considered is reported in Fig.5.36(c) and it occurs in a
range between 110 and 125 Hz depending on conditions tested. Hence, only GFDF
exponential function is considered. The experimental test rig is modelled with a
geometry in Fig.5.36(a) while the computational mesh is shown in Fig.5.36(b). As
illustrated in section 5.3.2, to proceed with Comsol test, calibration of the system
is required. Calibration is based on results of Fig.5.34, and it considers two coeffi-
cients λ1 and λ2 which affect the gain of FDF in a range of f >87 Hz:

NFTF(r, f ) = 107 · λ1(r) ξ2(r) · e−λ2 0.017 f (5.24)

In particular, λ1 coefficient depends on amplitude, while λ2 is constant. In this way,
NFTF of the flame model is founded. For each configuration of upstream manifold,
different values of λ1 and λ2 are applied. Also, to obtain bifurcation diagram, two
different relations between λ1 and amplitude r are tested. At first, power function
is tested.
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Figure 5.35: Comparison between experimental and analytic FDF.

(a)

(b)

(c)

Figure 5.36: Numerical model of test rig: (a) geometry, (b) computational mesh, (c) acoustic mode
studied.
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For "medium" configuration (L1=160mm), calibration coefficients are evaluated as

λ1M = 0.1 r−0.25 (5.25)

λ2M = 6.3. (5.26)

For these relations, as performed in [45], limit condition of ωi = 55 s−1 is searched
for, and bifurcation diagram is obtained(Fig.5.37(a)). According to Palies’s results,
Hopf point is evaluated at L3 = 180 mm and an increase of curve slope occurs
at flame tube length equal to 280 mm. However, the subcritical bifurcation which
occurs in a little range of amplitude between r= 0.3 and r= 0.4 is not reproduced.
This is due to the expression of calibration coefficient in eq.(5.25), which however
leads to results in good agreement with the ones obtained by Palies.
For "long" configuration of test rig, calibration coefficients are set as

λ1L = 0.96 r−0.12 (5.27)

λ2L = 7.647. (5.28)

The results obtained are reported in Fig.5.37 (b). The Hopf point is correctly eval-
uated in L3 = 220 mm while the fold points, which occur in Palies’s data at
L3 = 285 mm and at L3 = 320 mm, are not reproduced. In particular, an alter-
nated supercritical and subcritical bifurcation diagrams occur while in Comsol su-
percritical bifurcation is obtained. However conservative beginning of instability is
predicted.
The results obtained with the power expression of λ1 are in good agreement with

numerical data obtained by Palies, but at low amplitude theoretical singularity oc-
curs. In particular, in experimental data the amplitude of velocity ratio starts at
r=0.1, but if r=0 the eqs.(5.25)(5.27) lead to λ1 −→ ∞. To solve this problem poly-
nomial function is tested. In this way, also r= 0, NFTF is constant value and linear
analysis can be performed. So, for "medium" configuration, expression reported in
eq.(5.29) is applied to λ1M, while λ2M is set as in eq.(5.26). For "long" configuration,
expression of λ1L and λ2L are reported in eqs.(5.30)(5.28).

λ1M = 0.347 r2 − 0.3881 r + 0.222 (5.29)

λ1L = 1.936 r2 − 2.075 r + 1.567 (5.30)

Results obtained are shown in Fig.5.38. In both cases good agreement with Palies’s
data is obtained at lower amplitude, but for r > 0.5 increase of curve slope oc-
curs. Hence, to reproduce bifurcation diagram, piecewise expression of coefficient
λ1 is considered. At high amplitude power relation may be set, while to elimi-
nate the singularity at low amplitude, polynomial dependence is applied. In par-
ticular, expressions of λ1 for "medium" and "long" configuration are reported in
eqs.(5.31)(5.32).

λ1M =

{
0.347 r2 − 0.3881 r + 0.222 r < 0.33
0.1 r−0.25 r > 0.33

(5.31)
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(a)

(b)

Figure 5.37: Comparison between bifurcation diagram obtained by Palies and Comsol results ob-
tained with power function for λ1: (a) "medium" configuration, (b) "long" configura-
tion.

λ1L =

{
1.936 r2 − 2.075 r + 1.567 r < 0.33
0.96 r−0.12 r > 0.33

(5.32)

Replacing λ1 and λ2 in eq.(5.24) with expression of (5.31) and (5.26) for "medium"
configuration, and with eqs.(5.32)(5.28) for "long" geometry, results in Fig.5.39 are
obtained. The bifurcations diagram obtained by Comsol are similar to the ones ob-
tained by Palies, especially in geometry with medium upstream manifold. In the
"long" configuration conservative stability prediction is obtained. Hence, calibra-
tion with piecewise function leads to results more similar to the ones performed
with power expression, but it removes the singularity which occurs at low ampli-
tude in power function model.
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(a)

(b)

Figure 5.38: Comparison between bifurcation diagram obtained by Palies and Comsol results ob-
tained with polynomial function for λ1: (a) "medium" configuration, (b) "long" con-
figuration.

Table 5.4: Comparison of experimental and numerical predicted frequency of the mode in Fig.5.36c
for the medium (M) and long (L) upstream manifold with the two flame tube size
L3= 200,400 mm at r= 0.1.

Frequency (Exp) Hz Frequency (Pred) Hz

M-200 120 122

M-400 116 117

L-200 115 118

L-400 113 102

A comparison between experimental and predicted frequencies of the mode stud-
ied is reported in Tab.5.4. The calculated frequencies are quite close to the experi-
mental values, confirming the described approach.
To complete the study, stability map of the system is reproduced. For each ampli-
tude, varying flame tube length in unstable zone, value of ωi − ζ is evaluated. In
this way, results of Fig.5.40 are obtained. As flame tube length increase, value of
ωi − ζ grows, and the system evolves to more unstable conditions. Comparing the
stability maps reproduced in Comsol and the ones obtained by Palies in (Fig.5.34),
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(a)

(b)

Figure 5.39: Comparison between bifurcation diagram obtained by Palies and Comsol results ob-
tained with flame model in (5.24): (a) "medium" configuration with λ1M in (5.31) and
λ2M in (5.26) , (b) "long" configuration with λ1L in (5.32) and λ2L in (5.28).

can be evaluate the accuracy of the model. The good agreement with numerical re-
sults confirms the ability to perform a nonlinear thermoacoustic analysis in Comsol,
even if a calibration of the flame model must be considered.

5.4.2 Influence of damping coefficient

In [45] is reported the procedure to measure the damping coefficient of the sys-
tem. In particular, for Palies’s test rig, ζ is evaluated equal to 0.55 s−1. This value is
compared to growth rate in order to obtain the bifurcation diagram. The damping
coefficient is a property of particular test rig, and it depends on the geometry of the
burner. Hence, to evaluate the damping coefficient influence on stability, various
test are performed in Comsol using the flame model in eq.(5.24). The same bifurca-
tion diagram obtained for "medium" configuration is considered, but the beginning
of unstable conditions is displaced from growth rate equal to ζ to two different co-
efficients ζ1 and ζ2. In particular, cases with ζ1 = 0.5 s−1 and ζ2 = 0.6 s−1 are
considered, and the influence on λ1M is studied maintaining λ2M=6.3. Results are
shown in Fig.5.41. The variation of damping coefficient of test rig leads to an al-
teration of λ1. However the qualitative behaviour is the same. So, calibrated flame
model can be used for qualitative investigation of combustion instability in test rig
with different damping coefficient.
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(a)

(b)

Figure 5.40: Stability maps of test rig obtained in Comsol. The color zones indicates values of
ωi − ζ in s−1. (a) "medium" configuration, (b) "long" configuration.

Figure 5.41: Influence of damping on calibration coefficient λ1.
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This chapter contains the application of the 3D FEM approach described in the
previous chapters to an actual annular combustion chamber of an heavy duty gas
turbine. The geometry and all the operative conditions are provided by Ansaldo
Energia. At the beginning the model is described (geometry, computational grid,
operating conditions and boundary conditions). Then the modes of the chamber
are evaluated, and for one of these, nonlinear flame model is applied to reproduce
bifurcation diagram. In particular, experimental data of combustion instability in
Ansaldo machine are not available, and then, with some approximations, experi-
mental FDF obtained by Palies in [45] is considered.

6.1 geometry and boundary conditions

The geometry of the Ansaldo Energia annular combustion chamber is taken from
the work carried out by Campa [1]. It is composed by 24 burners placed in annular
sector. A quarter of the entire 3D chamber is shown in Fig.6.1. The computational
grid is defined in order to have a good mixing between the computational accu-
racy and a reduction of the required computational efforts (Fig.6.2) [1]. Both the
inlet and the outlet boundary conditions are closed walls, like all the other bound-
aries. Actually the inlet and the outlet zones are not exactly closed walls, since
they should be defined by means of acoustic impedances which take into account
the flow condition at the exit of the axial compressor (inlet to the plenum) and at
the entrance of the turbine (outlet of the combustion chamber). The assumption of
closed walls is driven by the difficulty to obtain this kind of information, so that
simplified boundary conditions are assumed. In order to reduce the computational
efforts (number of processors and RAM used) and the computational time, only
one quarter of the entire annular combustion chamber is examined instead of the
whole. In acoustics it is possible to detect all the eigenfrequencies of the system
only from one quarter, since there are surfaces with nodes and surfaces with the
maxima and the minima of the acoustic pressure trend. It is necessary to apply
proper periodic boundary conditions and two steps in the computation are carried
out [1]. In the first step sound hard boundary conditions are applied to the longi-
tudinal sections (symmetric boundary conditions). In the second step sound hard
boundary condition is applied to one longitudinal section and sound soft boundary
condition to the other longitudinal section (non-symmetric boundary conditions).
In so doing the azimuthal modes are detected once and not twice as happens when
an entire circumferential domain is computed. Hence, exploiting the symmetry of
the phenomenon, the mode shape of the eigenvalue corresponding to the entire
geometry can be obtained from the mode shape of one quarter of the entire geom-
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(a)

(b)

Figure 6.1: Quarter of the whole combustion chamber in the 3D FEM code: (a) top view, (b) bottom
view [1].

(a)

(b)

Figure 6.2: Computational grid of one quarter of the system: (a) top view, (b) bottom view [1].
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etry. In [1] various tests are performed to evaluate the symmetry influence on the
assessment of eigenfrequencies. The results obtained for a quarter of entire geome-
try are in very good agreement with the ones evaluated with whole configurations,
confirming the followed approach.

6.2 operative conditions
The operative conditions come from experimental and numerical data provided

by Ansaldo Energia. In the plenum uniform operative conditions are assumed. In
the combustion chamber the pressure and the temperature varies point by point.
One configuration is taken into account and it refers to the condition of maximum
load: the temperature field is introduced from the numerical data obtained by
means of the fluid dynamic simulations in Fluent, which are shown in Fig.6.3. The

(a)

(b)

Figure 6.3: Temperature field in combustion chamber (Fluent data): (a) view of plan parallel to
the yz plan, (b) view of plan parallel to the zx plan [1].

maximum values of the temperature are concentrated inside the flame, while the
minimum values inside the flame front. Across the flame front there is an abrupt
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passage from the lower to the higher values of temperature. The swirl effect is not
directly taken into account, but it is evident from the images, as well as the cooling
system around the shroud of the combustion chamber.

6.3 burner transfer matrix
Limited domains, such as the conduits of the burners, characterized by a unidi-

mensional propagation of the acoustic wave and by not-negligible levels of the flow
velocity, can be treated as compact elements. Additionally, the burners are conduits
composed of several details, and their acoustic modeling is very challenging. The
burners can thus be modelled by means of specific transfer function matrices, ex-
perimentally or numerically obtained through CFD or aeroacoustics codes. The
mathematical model of the burners is represented by a system of linear equations,
which is the transfer matrix. In this system the unknowns are the fluctuations of
acoustic pressure p ′ and acoustic velocity u ′ at the junctions, or ports of the el-
ement. Several tests reported in [1] shows a very good agreement between the
results obtained with transfer matrix and those obtained from the original "one-
piece" duct. Hence, it is possible to substitute burner with a transfer matrix of a
compact element with reduction of the computational efforts. Also, by means of the
transfer matrix, it is possible to take into account the effects induced by the Mach
number and the loss coefficient. In the following tests the burner is modelled as a
transfer matrix obtained by means of experimental data. According to the work of
Fanaca and Alemela [46][47], assuming a onedimensional flow and linearizing the
conservation equations, it is obtained[

A

(
p ′

ρc
M+ u ′

)]d
u

= 0 (6.1)

iω

c
u ′uleff +

[
Mu ′ +

p ′

ρc

]d
u

+ ζMdu
′
d = 0 (6.2)

In eq.(6.2) the effective length leff is a measure of the accelerated mass in the com-
pact element

leff =

∫xd
xd

Au

A(x)
dx (6.3)

and it takes into account the variation of section between plenum and burner. ζ is
the acoustical losses and generally closed to the time mean flow loss coefficient.
Using effective length leff and pressure loss coefficient ζ, neglecting higher order
Mach number terms, the transfer matrix of a compact element is obtained from
eq.(6.1) and eq.(6.2): p ′

ρc

u ′


d

=

 1 Mu −αMd(1+ ζ) − iKileff

αMu −Md α+MdiKileff

 p ′

ρc

u ′


u

(6.4)
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where Ki = ω/c is wave number and α = Au/Ad is the area ratio. The surfaces
over which the transfer matrix is applied are chosen in order to be representative
of the whole system of adduction of compressed air and methane inside the com-
bustion chamber. Hence the inlet surface is the inlet to the burner system from the
plenum and the outlet surface is the entrance to the combustion chamber, Fig.6.4.
In this system the transfer matrix substitutes the cylindrical computational domain

Figure 6.4: Model of the burner transfer matrix with the inlet and outlet surfaces [1].

modelling the burner. As a consequence, α = 1, the Mach number is constant and
the effective length is equal to the length of the substituted element. The terms
characterizing the burner transfer matrix come from experimental data on the di-
agonal burner and concerns the pressure gradient, the density, the velocity, the
temperature and the pressure.
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6.4 linear analysis

6.4.1 Results without unsteady heat release

First the modes of the actual annular combustion chamber are detected without
unsteady heat release. The complex eigenfrequencies have a nonzero imaginary
part because the model is composed of acoustic impedance conditions related to
the transfer matrix. Hence it is possible to detect the growth rate of the oscil-
lations for every mode even if the source term is absent. The first modes until
250 Hz are searched for and they are listed in Tab.6.1, where an indication about
their modeshape is provided. In particular modes named with "AX" refer to pure
axial modes, the "AZ" are azimuthal modes, while "M" represent the azimuthal-
axial mode shape. The frequencies are normalized against the first eigenfrequency.
Fig.6.5 shows frequencies and growth rates of the modes, highlighting the stability
of each mode, as expected.

Figure 6.5: Frequencies and growth rates of the modes regarding the actual annular combustion
chamber without unsteady heat release.

6.4.2 Results with unsteady heat release

To reproduce the flame and the heat release which occur in real machine, nu-
merical data from RANS simulation are inserted in the FEM code. In particular,
the eigenvalue problem is solved with the actual temperatures into the combustion
chamber, defining as well as possible the flame shape. In Fig.6.3 the temperature
field inside the combustor is reported, while Fig.6.6 shows the Rate of Reaction data
from the fluid-dynamic simulations in Ansys Fluent. Rate of Reaction is defined as
the rate of reaction of the consumption of methane in a two step reaction between
methane and air, and it is used to describe the flame font. Volumetric heat release
fluctuations q ′ are modelled by means of the following procedure:
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Table 6.1: List of the first modes until 250 Hz. Frequencies are normalized against the first eigen-
frequency.

Number Name Frequency Node zone

1 AX1 1 1 plenum
2 AX2 1.52 2 plenum
3 AX3 1.57 1 plenum
4 AZ1 1.78 1 plenum
5 AX4 2.18 2 plenum
6 AX5 2.38 1 plenum
7 AZ2 2.56 1 plenum
8 M1 2.61 ax1-az1 plenum & chamber
9 AX6 2.76 2 plenum

10 AZ3 3.35 2 plenum
11 AX7 3.45 1 plenum
12 M2 3.46 ax2-az1 plenum & chamber
13 M3 3.57 ax1-az1 plenum & chamber
14 M4 3.72 ax1-az1 plenum & chamber
15 AX8 3.78 1 plenum
16 AZ4 4.13 2 plenum
17 AX9 4.15 2 plenum
18 AX10 4.25 2 plenum
19 M5 4.40 ax1-az2 plenum & chamber
20 M6 4.54 ax3-az1 plenum & chamber

1. q = 0 and q̂ = 0 when Rate of Reaction is lower than an inferior limit, which is
properly defined;

2. in the other points q (volumetric heat releaseW/m3) is calculated considering
the Lower Heating Value (J/kmol).

Heat release law is obtained from the following model:

q ′(x)

q(x)
= −k

u ′i(t− τ(x))

ui
(6.5)

where q is the volumetric heat release, q is its mean value, subscript i corresponds
to the position at which acoustic velocity inside heat release law is referred. In this
scheme this position corresponds to the combustion chamber inlet, which is also
the burner transfer matrix interface. Heat release is expressed as

q = RR(x) · hf, (6.6)

where RR represents the spatial distribution of Rate of Reaction [kmol/m3s], hf is
the Lower Heating Value [J/kmol] of the fuel. Rate of Reaction decays to zero value
outside the flame and then flame front is correctly reproduced. The volumetric
heat release model defined in eq.(6.6) is transferred into the governing equation.
Time delay is defined with a spatial distribution along the flame front through a
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(a)

(b)

Figure 6.6: Reaction Rate from RANS simulation. : (a) view of chamber, (b) view along one sector
axis. The values are normalized against the maximum Reaction Rate. [1].

function of position τ(x). The procedure to detect this distribution is roughly the
same proposed by Krebs et al.[48] and called "flight time" method by Giauque et
al. [49]. Using the CFD analysis, time for a particle to go from the burner exit to
the flame front is calculated. The spatial distribution for τ is obtained by means of
a high number of particles[1][50]. Fig.6.7 shows the time delay distribution inside
the combustion chamber as taken from the RANS simulations. The time delay is
plotted only in the areas where the values of heat release are significant [1].
Applying the flame model in (6.5) the eigenvalues of the machine are evaluated. In
Fig.6.8 is reported a comparison between eigenvalues obtained with linear flame
model and the ones evaluated without unsteady heat release. Results show that
if heat release is considered, variation of the frequency and the growth rate occur.
In particular, limited alteration of the eigenfrequency is evaluated, while there are
some modes with a large change in the value of growth rate. As a general result, ap-
plying the linear flame model a less stable condition occurs. For must of all modes,
variation from negative to positive growth rate is expected, with an alteration of
the stability condition.
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Figure 6.7: Time delay from RANS simulation in the 3D FEM code. The values are normalized
against the maximum value [50].

Figure 6.8: Comparison between eigenvalues of machine obtained with linear flame model and
the ones evaluated without unsteady heat release.

Time delay influence

To evaluate the time delay influence on stability of the system, τ value must
be regarded as a constant. The assumption of a constant time delay could be
justified by work of Campa [1] which evaluates the range of interest for machine
configuration. In particular, time delay is assumed between 5 to 8 ms. The study
of time delay influence is performed on mode 12 of Tab.6.1. It is the first azimuthal
mode in combustion chamber and it is one of the most dangerous which occur
in real machine. Fig.6.9 shows the mode considered for the study. Time delay
influence is evaluated setting interaction index of heat release k=1 and varying τ
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Figure 6.9: First azimuthal mode in combustion chamber.

from 3 to 8 ms. Results are reported in Fig.6.10. As time delay increases, the
frequency of the mode drops, while growth rate oscillates between positive and
negative values. In particular, in the range of interest between 5 to 8 ms, system
evolves from unstable to stable conditions. For time delay higher than about 6.5 ms
less stable conditions occur up to τ = 7.4 ms which brings back the system to
unstable condition. This confirms that time delay is an important parameter on
stability, and then it must be evaluated with high accuracy.

Interaction index influence

To complete linear analysis of the studied acoustic mode, influence of interaction
index k is evaluated. In particular time delay is set equal to 5 ms, while k is varied
from 0.4 to 1.8. Results are reported in Fig.6.11. As k increases, nonlinear decreasing
behaviour of frequency is obtained. The system moves from stable to unstable
conditions with monotone growing trend of growth rate. In fact, as k increases
higher value of heat release is considered with reduction of stability conditions.
Hence, the growth rate moves from negative to positive values, while frequency
drops. However the effect of interaction index on frequency is very low. This
behaviour of the system demonstrates the importance to consider the correct heat
release interaction index and how the mode is modified by changing in the load.
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(a) (b)

Figure 6.10: Influence of time delay on the first azimuthal mode in combustion chamber: (a) fre-
quency dependence, (b) growth rate dependence.

(a) (b)

Figure 6.11: Influence of interaction index on the first azimuthal mode in combustion chamber:
(a) frequency dependence, (b) growth rate dependence.

6.5 nonlinear flame model
As reported in the previous chapter, a non linear analysis is very important in

studying the thermoacoustic instability. To obtain the limit cycle and the bifurcation
diagrams of Ansaldo machine, nonlinear flame model is applied. First the polyno-
mial flame model previously applied to simplified geometry is considered. Then,
experimental FDF obtained by Palies is set to evaluate the qualitative behaviour of
bifurcation diagram and the influence of parameter on stability of combustor .

6.5.1 Test case from the literature

In order to evaluate the nonlinear heat release effect in real machine, polyno-
mial flame model tested before in simplified geometry is applied. In particular,
quadratic polynomial of eq.(5.2) is considered with µ2 = 1 and µ0 = 0.2. τ is set
constant and equal to 5 ms. Results are shown in Fig.6.12 and they confirm the
behaviour of bifurcation diagram obtained with the same flame model in Rijke
tube. As can be predict from weakly nonlinear analysis subcritical bifurcation oc-
curs with Hopf point in k = 4.82.
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Figure 6.12: Bifurcation diagram for machine configuration with flame model of eq.(5.2), µ2 = 1
and µ0 = 0.2.

Figure 6.13: Influence of time delay of flame model in eq.(5.2) on stability of machine combustor.

For this flame model, with reference to fifth chapter, the influence of time delay
and damping coefficient is evaluated. In particular, three cases with τ = 5 ms,
τ1 = 4 ms and τ2 = 7 ms are considered. For each value of time delay varying
the interaction index k zero growth rate condition is searched for and bifurcation
diagram is obtained. Results are reported in Fig.6.13. As obtained for Rijke tube
configuration in Fig.5.3, the influence of the time delay is on the position of the
Hopf point. It can be seen that a rise of time delay does not involve a monotone in-
crease or reduction of stability range. In fact, for τ1 the Hopf point moves at k = 5.2
while for τ2 it occurs at k = 5.69. This trend is due to the oscillatory behaviour of
growth rate evaluated in linear analysis.
The influence of damping is analyzed considering eq.(5.9). Damping coefficient
is varied in a range between 0 to 0.07, and for each value of this, flame model of
eq.(5.2) is applied and bifurcation diagram is tracked. Once again the same trend
observed for Rijke tube in Fig.5.12 is obtained. The presence of damping increases
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Figure 6.14: Influence of damping coefficient on stability of machine combustor.

the stability range of combustion, proportionally to the value of ζ.
Applying the same flame model to Rijke tube and machine configuration, the same
behaviour of bifurcation diagram is evaluated. Also, an alteration of parameters of
the system leads to the same change in stability conditions. This confirms that the
kind of bifurcation depends on the nonlinear flame model, independently of the
geometrical configuration examined, following the predictions of the weakly non-
linear analysis. Hence, qualitative nonlinear analysis can be performed in order to
obtain informations about the flame model. In this way, in presence of experimen-
tal measurements in real machine, numerical model can be calibrated in order to
predict combustion instability.

6.5.2 Experimental flame model

At the moment in Ansaldo Energia experimental data about thermoacoustic in-
stability of AE94.3A machine are not available. Hence, qualitative analysis is per-
formed applying the experimental FDF obtained by Palies in [44]. This approx-
imation can be carried out considering that both combustors operate with swirl
premixed combustion. Also, on the literature several FDF similar to the one mea-
sured by Palies are reported. In particular in most of these, the gain presents two
peaks at different frequencies and then it decays to zero as frequency increases. So,
at first FDF of Palies is used as banchmark while in next step sensitivity analysis
on the FTF shape is carried out.
To apply experimental FDF on the machine configuration, it must be considered
that the acoustic mode of machine tested occurs at different frequency compared
to the one studied in Palies test rig. Hence, the FDF must be scaled in order to
lead the second peak of gain in a frequency range of the considered mode. Fig.6.15

shows the scaled FDF obtained for relation in eqs.(6.7),(6.8) and (6.9). The influence
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of amplitude on NFTF is maintained equal to the one evaluated from the measure-
ments by Palies in eq.(5.24).

GFDF =

{
0.7+ ξ1

(
u ′

u

)
· cos

(( f
8π

)
−ϕ
)

if f/f0 < 3.27

107 ξ2
(
u ′

u

)
·e−0.015 f if f/f0 > 3.27.

(6.7)

ξ1 = 0.85− 0.7
(u ′
u

)
(6.8)

ξ2 = 21, 185− 8.872
(u ′
u

)
(6.9)

Hence, the same relation used in previous analyses is considered for ξ1, while
relation of (6.9) is applied to ξ2 to guarantee correct piecewise function. Also, the
same calibration coefficients evaluated for two different configurations of Palies test
rig are considered. One test is performed with the calibration coefficients reported
in eqs.(5.31), (5.26) while further test considers relations in eqs.(5.32) and (5.28). The
nonlinear analysis is conducted on the mode 12 of Tab.6.1 applying the nonlinear
flame model in eq.(6.10). Time delay is set equal to 5 ms. This value is the same
evaluated for the test rig of Palies, and then less approximation on calibration
coefficients can be considered. Also, time delay is in good agreement with results
from RANS simulation.

q̂

q
= k NFTF

( û
u

)
· û
u
eiωτ (6.10)

Results are reported in Fig.6.16. The behaviour of bifurcation diagrams obtained
for calibration coefficients relative to two different configurations of Palies test rig is
similar. In particular supercritical bifurcation occurs with the Hopf points at k=0.49
and k=1.65 but the same trend is expected. Then, only calibration coefficients of
eqs.(5.31), (5.26), relative to "medium" configuration of Palies test rig, is considered
for the next simulations.

Figure 6.15: FDF obtained by Palies scaled on frequency of Ansaldo machine mode.
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(a)

(b)

Figure 6.16: Bifurcation diagram of real machine evaluated with experimental flame model of
eq.(5.21): (a) calibration coefficients of eqs.(5.31) and (5.26), (b) calibration coefficients
of eqs.(5.32) and (5.28).

Sensitivity analysis

In order to evaluate the effects of different FDFs on stability conditions of ma-
chine, several tests are performed varying the shape of the FDF. The gain is ap-
proximated with three piecewise functions to vary the value and the position of
the second peak of gain. The expressions used are reported in eq.(6.11) where ξ1,
ξ2, ξ3, υ1 and υ2 are coefficients set in such a way to obtain the required shape.

GFDF =


0.7+ ξ1

(
u ′

u

)
· cos

(( f
υ1π

)
−1, 2

)
if f/f0 < 2.7

0.7+ ξ2
(
u ′

u

)
· cos

(( f
υ2π

)
−1, 2

)
if 2.7 6 f/f0 < 3.27

ξ2
(
u ′

u

)
·e−0.015 f if f/f0 > 3.27.

(6.11)

The FDF is obtained considering ξ1, ξ2, ξ3 with dependence to the amplitude. In
particular the parametric analysis of the gain is carried out on curve relative to r=0.3
and it is extended to the other amplitudes considering the eq.(6.8) for ξ1 andξ2,
maintaining the same linear dependence of eq.(6.9) for ξ3. At first, the value of the
gain at second peak is varied (Fig.6.17). The peak is maintained at the frequency of
the mode studied and gain value is varied from 0.8 to 1.4. Considering the flame
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(a) (b)

(c) (d)

Figure 6.17: FDF with second peak at normalized frequency equal to 3.27 : (a) gain=0.8, (b) gain=1,
(c) gain=1.2, (d) gain=1.4.

Figure 6.18: Influence of the second peak gain of FDF on bifurcation diagram.

model in eq.(5.20) and eq.(6.10), with calibration coefficient in eqs.(5.31) and (5.26),
bifurcation diagram of the system are obtained. Time delay is set constant and
equal to 5 ms. Results are reported in Fig.6.18. As can be expected, reducing the
gain peak of FDF, unstable conditions occur at higher value of interaction index k.
In particular the Hopf point moves from k=0.84 to k=0.52 with nonlinear behaviour.
Also, at constant interaction index, as gain increases the amplitudes reached by
system grow. In fact, the gain of FDF is related to the heat release in combustion
chamber, and as it increases less stable combustion conditions occur.
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The last analysis is performed considering the peak of gain at three different
frequencies. In particular, the gain value is set equal to 1.2 and the peak is moved
at normalized frequencies equal to 2.9, 3 and 3.27. Fig.6.19 shows the FDF for the
considered cases. For each case, applying the flame model used before, stability
conditions of the system are evaluated. Results are reported in Fig.6.20.

(a) (b)

(c)

Figure 6.19: FDF with second peak gain of 1.2 : (a) second peak at 2.9, (b) second peak at 3, (c)
second peak at 3.27.

Figure 6.20: Influence of the second peak position on bifurcation diagram.
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The same supercritical behaviour of bifurcation diagram is expected with varia-
tion in Hopf point and in amplitude reached by the system. As the frequency of the
peak decreases, the gain of FDF at the frequency of the mode drops. In particular,
as peak is shifted, the gain moves from 1.2 to 0.88. This causes a lower heat release
promoting the stability of the system. Hence, as Fig.6.20 shows, the Hopf point
moves at higher values of k and system reaches a lower amplitude.
Previous results show that as the shape of FDF varies, stability conditions of the
system change. However similar behaviour of bifurcation diagram is expected, and
even if some hypotheses are carried out to consider experimental FDF of another
test rig, qualitative influence of different parameters are evaluated.
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The work described in the previous chapters has brought to the confirmation of
the methodology used for the analysis of the thermoacoustic combustion instabili-
ties in Ansaldo Energia. A 3D FEM commercial software is used for the solution of
the acoustic equations. Elements from the traditional tools (low order models and
CFD models) are introduced inside this tool in order to have a better comprehen-
sion of the whole physical phenomenon.
The importance of the non linearity in the instability analysis has been examined,
and several nonlinear flame model are considered in order to obtain bifurcation
diagram of the system. In the first part of this work several nonlinear flame mod-
els are applied on simplified geometry to evaluate the influence of the main flame
parameters over the complex eigenfrequency. In particular has been fund that:

• the influence of the time delay and the damping is only on the position of
Hopf point and fold point;

• the amplitude of the limit cycle solution and the amplitude of the oscillations
at the fold point are not influenced by variations of the time delay or the
damping;

• the frequency of the mode changes only in linear conditions, whereas remains
constant when the nonlinear solution occurs.

A new method to track bifurcation diagram is found. For a particular nonlinear
flame model this new approach permits to evaluate stability conditions of the sys-
tem starting from the Hopf point. This can significantly reduce the time to obtain
bifurcation diagram.
The second part of the work confirms the possibility to use Comsol for solving the
Helmholtz equation with nonlinear flame models. However, experimental data on
stability of the system are required for calibration of the flame model. Since the
experimental measure of combustion instability on AE94.3A machine are not avail-
able, qualitative nonlinear analysis is carried out considering the experimental FDF
obtained from a simplified premix swirl combustor. This analysis has brought to
very good results which must be confirmed by experimental measurements.
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